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Abstract 
The constructive (i.e. Build) activity in Design Research is where human cognitive (e.g., com-
plexity, creativity, control) and social (e.g., collaboration) activities contribute to the design of 
novel artifacts that improve the human condition. In this essay, we model the design activity as an 
iterative process with flows connecting external and internal environments and problem and solu-
tion spaces. The design team performs within this process through cognitive interactions at criti-
cal points in the flow in order to structure the design problem, produce novel design candidates, 
manage the refinement of the best candidates into use artifacts, and achieve consensus among the 
design team as well as stakeholders. The model provides a basis to ‘broker’ and align neuroscien-
tific theory and design research in the Information Systems (IS) field and, by doing so, within the 
broader informing science transdiscipline. The emphasis in the model on the interplay of ‘doing’ 
tasks and ‘making’ sense focuses directly on the task at hand and in mind. These iterations are 
manifest in four interactions, each of which has a set of important cognitive challenges which we 
explore. Use of the model to guide NeuroDesign research presents a number of fruitful opportuni-
ties to extend the use of neuroimaging techniques in design research beyond the evaluation of 
information technology (IT) artifacts. The model also highlights the potential of design as an em-
pirical context to identify, frame, and address some of the limitations of prior studies of complex-
ity, creativity, control, and collaboration that, to date, have stymied mainstream neuroscience. 

Keywords: Design research, Neuroscience, NeuroIS, NeuroDesign, Design artifacts, Complexity, 
Creativity, Control, Collaboration 

Introduction 
Human progress occurs when creative 
new ideas are realized in design artifacts 
(products and services) and markets are 
formed to produce, trade, and use these 
artifacts in efficient and effective ways 
(Ridley, 2010). While past thinking has 
considered inspiration and invention as 
the somewhat arbitrary products of great 
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minds (e.g., Newton, Edison, Einstein, Jobs), the growing field of neuroscience is advancing our 
understanding of how the human brain generates new ideas. At the same time, the ‘information 
revolution’ has radically changed the ways in which we view and interact with our world. Thus, 
we have reached a tipping point where the fields of neuroscience and information technology (IT) 
are able to collaborate to identify and frame fundamental questions about the relationships be-
tween creativity, design, innovation, and research. The goals of such studies could include the 
development of new neuroscience models of creativity, new paradigms for designing IT artifacts, 
new approaches for education to optimize creative design thinking, and the development of crea-
tivity-enhancing IT tools for specific application domains. 

This is a dynamic environment where socio-cognitive acts are mediated by information technolo-
gies that are at the same time increasingly ubiquitous and sophisticated. Design opportunities and 
challenges are no longer the exclusive preserve of experts.  

Research Domains  
It is against this backdrop that we explore the synergistic relationship of design research and neu-
roscience and the opportunities and challenges it presents in the information systems (IS) and IT 
contexts. 

Design Research 
The Design Research paradigm has its roots in the sciences of the artificial (Simon, 1996). It is 
fundamentally a problem-solving paradigm. Design research seeks to enhance human knowledge 
with the creation of innovative, useful artifacts. These artifacts embody the ideas, practices, tech-
nical capabilities, and products through which information systems (IS) can be efficiently devel-
oped and effectively used. The results include both the newly designed artifact and a fuller under-
standing of the theories of why the artifact is an invention or an improvement to the relevant ap-
plication context (Hevner & Chatterjee, 2010; Hevner, March, Park, & Ram, 2004; Kuechler & 
Vaishnavi, 2008; Winter, 2008). 

To achieve a true understanding of and appreciation for the design research paradigm, an impor-
tant dichotomy must be faced. Design is both a process and a product. It describes the world as 
acted upon (processes) and the world as sensed (artifacts). This view of design supports a prob-
lem-solving paradigm that continuously shifts perspective between design processes and designed 
artifacts for the same complex problem. The design process is a sequence of activities tapping a 
range of expertise that produces an innovative product (i.e., the design artifact).  The evaluation 
of the artifact then provides feedback information and a better understanding of the problem in 
order to improve the qualities of both the product and the design process. This build-and-evaluate 
loop is typically iterated a number of times before the final design artifact is released into an ap-
plication context for further evaluation through field study. During this creative process, the re-
searcher must be cognizant of evolving both the design process and the design artifact as part of 
the research. 

Design activities are central to most applied disciplines. Research in design has a long history in 
many fields including architecture, engineering, education, psychology, and the fine arts (Cross, 
2001). The information systems (IS) field since its advent in the late 1940s has appropriated many 
of the ideas, concepts, and methods of design science that have originated in these other disci-
plines. However, IS as composed of inherently mutable and adaptable hardware, software, tele-
communications, and human interfaces provides many unique and challenging design problems 
that call for new, creative ideas and discovery. IS artifacts are implemented within an application 
context (e.g., a business organization) for the purpose of improving the effectiveness and effi-
ciency of that context. The utility of the artifact and the characteristics of the application – its 

104 



 Hevner, Davis, Collins, & Gill 

work systems, its people, and its development and implementation methodologies – together de-
termine the extent to which that purpose is achieved. Researchers produce new ideas that enhance 
generative capacity (Avital & Te’eni, 2009) and improve the ability of human organizations to 
adapt and succeed in the presence of changing environments. These generative ideas are then 
communicated as knowledge to the various IS communities (Baskerville, 2008; Gregor & Hev-
ner, 2013). 

NeuroIS 
Researchers in IS have recently expanded their experimental toolset to include methods of cogni-
tive neuroscience (Dimoka, Pavlou, & Davis, 2011). The use of neuroscience to investigate re-
search questions in information systems (termed NeuroIS) has grown rapidly with the availability 
of methods and tools adapted to IS research and application environments. As stated by Riedl et 
al. (2010): 

NeuroIS is a subfield in the IS literature that relies on neuroscience and neurophysi-
ological theories and tools to better understand the development, use, and impact of in-
formation technologies (IT). NeuroIS seeks to contribute to (i) the development of new 
theories that make possible accurate predictions of IT-related behaviors, and (ii) the de-
sign of IT artifacts that positively affect economic and non-economic variables (e.g., pro-
ductivity, satisfaction, adoption, and well-being). 

We note that this definition appropriately highlights the research applications of neuroscience to 
the study of both the construction and use of the IT artifact. Viewed in the design research 
framework (Figure 1), there are key opportunities to use neuroscience methods and tools to facili-
tate and monitor the creative processes that generate and build the artifact, to evaluate the evolv-
ing artifact in the lab setting, to evaluate a released artifact in a field setting, and to provide some 
theoretic cohesion. 

 

Figure 1: Neuroscience Opportunities in Design Research 

The extant literature in NeuroIS focuses almost exclusively on the application of neuroscience for 
the evaluation of IT artifacts in an application context as seen in the following examples. Riedl 
(2009) examines the preference for object-oriented or control-flow programming languages. 
Technology acceptance using the TAM (F. Davis, 1989) has been studied by Dimoka and Davis 
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(2008) and Dimoka et al. (2011). Gender differences in the use of technology and gender differ-
ences in trust in IT applications are explored in Dimoka et al. (2009) and Dimoka (2010). Glim-
cher, Fehr, Camerer, and Poldrack (2009) provide insights into brain processing underlying the 
use of decision support systems. In all of these projects, the evaluated IT artifact is well-known 
and had been previously established as useful in the application context. However, to date, there 
has been an imbalance between emphasis on evaluation of what Avital and Te’eni (2009) call 
‘generative fit’ – the focus on the application context – and ‘generative capacity’. 

NeuroDesign 
Very little NeuroIS research has studied the cognitive tasks of performing design Build activities 
(Vom Brocke, Riedl, & Leger, 2012). We recognize the existence of a vast neuroscience literature 
examining the locations in the brain that are activated by the processes of creativity, insight, de-
sign, communication, collaboration, and control (e.g. Dietrich, 2004; Seidel Müller-Wienbergen, 
& Becker, 2010). Our aim in this essay is not to exhaustively plumb such depths but rather to ini-
tiate an investigation into how to apply this extensive neuroscience knowledge base to the design 
research activities of building innovative IT artifacts. We develop a conceptual model of the de-
sign activity that highlights four key cognitive activities essential to successful design research. 
The model strives to align the epistemological challenges evident in mainstream neuroscience 
with the specific opportunities that neurophysiological imaging techniques present the design re-
searcher. Our model does not present a meta-analysis per se (such analyses are ongoing in both 
neuroscience (Dietrich & Kanso, 2010) and IS (Seidel et al., 2010)) but rather a framework for 
reconciliation of the theoretic perspectives and empirical lenses that have guided work in these 
disciplines to date.  

A small set of selected references to neuroscience studies is used to illustrate potential Neu-
roDesign connections. We conclude with an analysis of the synergies between the design research 
methods and neuroscience and how these synergies have the potential to enable exciting new re-
search directions in NeuroDesign. 

A Neuroscience Model of Design 
As a guide for aligning design research with neuroscience studies, we propose a conceptual 
model of design (Figure 2). The key structure of the model is the 2x2 description of the design 
process. The x-axis distinguishes the External (Task) Environment from the Internal (Cognitive) 
Environment while the y-axis separates the Problem Space from the Solution Space. 

• External (Task) Environment: This is the context of the design problem that has been pre-
sented. It includes an objectively determined but largely unknowable design fitness land-
scape that is independent of how the design is performed and exerts constraints on the 
problem and solution spaces. 

• Internal (Cognitive) Environment: This is where human cognitive facilities perform the 
design processes needed to produce a satisfactory design solution. Neuroscience tools and 
techniques are applicable in this environment. 

• Problem Space: This space supports the description of the design problem in the real 
world and the collection of representations, rules, and mappings that exists, individual 
and collectively, within the minds of the designers.  

• Solution Space: This space enables production of design artifacts that move from the 
cognitive environment (because their purpose is often to facilitate communication and re-
call, such as a plan or prototype) to the external environment (because they are real). 
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Figure 2: NeuroDesign Model 

We model the design activity as an iterative process with three key flows: (1) from an external 
problem space to an internal problem space via problem requirements; (2) from the internal prob-
lem space to an internal solution space via candidate designs; and (3) from the internal solution 
space to an external solution space via use artifacts. The human design team performs the design 
tasks via interactions with the internal environment of the design activity. They act within this 
process through cognitive interactions at critical points in the flow: 

1. Structure Problem – What cognitive activities address the complexities of the problem 
space? How does the brain search the problem statement for potential solution patterns 
while finding effective representations of problem structure? 

2. Produce Novelty – How does the brain create new ideas for the production of innovative 
design candidates?  

3. Manage Refinement – How does the brain control the assessment of candidate designs 
and search for the ‘best’ designs to instantiate as use artifacts? 

4. Achieve Consensus – How do humans collaborate with others on the design team and 
with design stakeholders throughout the design process?  

Our interest in NeuroDesign from an IS perspective, as shown in Figure 2, can be framed in terms 
of a better understanding of how designers interact with the problem space, the solution space, 
and with other designers in particular ways. (Note that we do not focus on understanding how the 
brain handles design problems. To the extent that it is a valid research agenda, this question 
seems much more likely to be of value to neuroscientists). For design research in IS, we pose the 
following important practical reasons for exploring what goes on inside the designer’s brain. 

• Observed design behaviors appear to violate “rational” (i.e. purely symbolic) views on 
how design should be conducted. For example, Ethiraj, Levinthal, and Roy (2008) ob-
serve that designers may choose to develop highly modular designs that are easily imi-
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tated whereas more innovative, less modular designs provide superior long term advan-
tage over competitors. Such thinking parallels the behavioral economics research stream 
established by Kahneman (2011) and Ariely (2008) with respect to decision-making. If 
we were to better understand such design behaviors, we might be able to train individuals 
to be better designers by helping them learn to recognize common pitfalls. 

• Different designers appear to follow very different paths when confronted with the same 
design problem—but cannot explain why. If we could understand these different ap-
proaches it might help us attain a better fit between designers and the types of problems 
we give them, since different types of design problems might be better served by corre-
spondingly different design styles. 

• What stopping rules do designers use in the design process to move design candidates 
from the problem space to the solution space and to move use artifacts from the internal 
environment to the external environment? (Browne & Pitts, 2004). Considerable lost time 
and effort is spent in useless brainstorming and evaluations of designs that are infeasible 
or clearly sub-optimal. At the same time, potentially good candidate solutions may be lost 
in the ‘fog’; their capacity for generative fit (per Avital & Te’eni, 2009) unrecognized by 
evaluative scales and frames of reference that obscure them. 

• The make-up of a design team appears to have a significant influence on the resulting de-
sign artifacts produced. How do issues like diversity and personality traits (e.g., conflict 
behavior) impact the collaborative performance of design teams? For example, Weed-
man’s (2008) study of design collaboration between earth and computer scientists finds 
difficulties from the different perspectives of collaborators, such as differing levels of 
tolerance for ambiguity. Understanding these collaboration challenges would help in the 
formation and training of effective teams. 

The model emphasizes the iterative interplay of action and interpretation (doing and making 
sense) rather than merely the influence of evaluation on choice (Weick, Sutcliffe, & Obstfeld, 
2005, p. 409). The model provides a basis to ‘broker’ and align neuroscientific theory and IS de-
sign research. The emphasis on the design Build process provides a tenable empirical focus but 
without the dependence on reified artifacts-in-use – as has been the case to date in NeuroIS. The 
emphasis in the model on the interplay of ‘doing’ tasks and ‘making’ sense focuses directly on 
the task at hand and in mind. These iterations are manifest in the four interactions, each of which 
has a set of important cognitive challenges which we subsequently explore. Use of the model to 
guide NeuroDesign research presents a number of fruitful opportunities to leverage neuroimaging 
techniques and findings in design research beyond the evaluation of IT artifacts. The model also 
highlights the potential of design as an empirical context to identify, frame, and address some of 
the limitations of prior studies of complexity, creativity, control and collaboration that, to date, 
have stymied mainstream neuroscience.  

The next four sections explore in more detail each of the highlighted cognitive challenges of the 
design Build activity. For each of the challenges, we describe its role in the model’s design flow, 
provide a selected illustration of findings in the neuroscience literature, and pose several key re-
search questions. 

Structuring the Problem - Complexity and Design 
One of the major factors influencing IS design is complexity. As seen in Figure 2, the first chal-
lenge a design team faces is the representation of the complex problem into a format that can be 
understood and manipulated. Designers may react to complexity in the design task in many dif-
ferent ways. They may choose to decompose the system into subsystems, each of which then be-
comes the basis of its own task. They may choose to approach the problem iteratively, using the 
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repetitive build-evaluate cycles that are typical of agile programming. They may choose to re-
frame the problem entirely, perhaps using analogy to look at the system in an entirely different 
way. They may even simplify the whole problem by choosing to imitate another design. Using 
task complexity as a framework for describing the design task allows us to better identify areas 
where NeuroIS may offer useful insights into the design process. 

Complexity in Design 
The task complexity construct has been studied extensively in the psychology literature. In the 
late 1980s two major surveys of the literature were published (Campbell, 1988; Wood, 1986). 
Because the conclusions of the two reviews were somewhat contradictory, for the next 20 years 
researchers who applied the construct tended to choose whichever definition was more conven-
ient, or at least familiar. A subsequent review (Gill & Hicks, 2006) updates these earlier reviews 
and concludes that five distinct classes of task complexity definition are commonly applied in the 
literature: three based upon sources of task complexity (lack of structure, nature of the problem 
space, and objective characteristics) and two related to the consequences of task complexity (ex-
perienced complexity and information processing). A latter refinement to this conceptual scheme 
(Gill & Murphy, 2011) adds a sixth class, referred to as ruggedness, drawn from evolutional biol-
ogy that describes the fitness of various possible end-states for a task (Kaufmann, 1993). This 
allows the six classes to be organized into a pleasing symmetry of three dimensions – unfamiliar, 
complicated, and the objectively complex (Gill & Murphy, 2011) – as seen in Table 1. Each di-
mension represents a continuum of levels. 

Table 1: Dimensions of Task Complexity 

Unfamiliar ( experienced  
complexity): 

Lack of structure  
Subjective experiences (e.g. dif-
ficulty, uncertainty, ambiguity) 

Complicated (problem space 
complexity): 

Nature of problem space 
(e.g. paths, size) 

 
Information processing (e.g. cy-
cles, capacity) 

Objectively Complex (real 
world complexity): 

Objective characteristics 
(e.g. number of ele-
ments, interrelation-
ships, dynamics) 

 

Ruggedness (e.g. number of fit-
ness peaks, sensitivity to small 
change), turbulence (e.g. punctu-
ated equilibrium) 

Unfamiliarity (experienced complexity) 
The unfamiliarity scale is evident in design; for example, some design tasks may be repetitive and 
highly familiar, such as a customer service representative configuring a new PC over the phone. 
Such tasks are, for the most part, deemed too trivial to be of interest to IS design research (Hevner 
& Chatterjee, 2010, p. 7). At the other extreme, an entirely unfamiliar task would be one for 
which the designer has no relevant experience, and for which uncertainty and perceived difficulty 
will probably be high. Here a variety of options may be open: research/learning, analy-
sis/modeling, imitation, intuition, and so forth. On this dimension, NeuroDesign research might 
give us a sense of the degree to which an individual’s cognitive predisposition influences how he 
or she chooses to approach unfamiliar design problems. 

Complicatedness (problem space complexity) 
The complicatedness dimension is determined by the designer’s own mental models – referred to 
as the problem space (Newell & Simon, 1972) – of the task. This particular form of task complex-
ity is very close to that originally defined by Campbell (1988) and is particularly sensitive to fac-
tors such as the number of successful vs. unsuccessful paths to a particular goal, the degree to 
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which decision outcomes are probabilistic, and the reversibility of decisions. For this reason, the 
dimension has also been referred to as path entropy (Gill & Hicks, 2006). 

Objectively Complex (real world complexity) 
The objectively complex dimension of task complexity principally deals with the fitness of end 
states or task goals. This form of complexity is directly tied to the external environment, the “real 
world”, because the fitness of a particular design artifact will ultimately be tied to the process of 
external adoption and adaptation. It is particularly important in design research because, by their 
very nature, nearly all significant design tasks involve identifying a suitable end state that will 
ultimately be embodied in the resulting design artifact. End state fitness is also the only aspect of 
a task that is likely to be performer-independent; both familiarity and the complicatedness of the 
problem space cannot be determined without reference to the performer’s knowledge. Wood’s 
(1986) objective complexity comes closest to this dimension (although it is not clear that he per-
ceived it in these terms). His three sources of complexity—component, coordinative, and dy-
namic—closely parallel the sources of ruggedness in Kauffman’s (1993) fitness landscape: the 
number of attributes in a system, the degree to which they interact to determine fitness, and the 
degree to which co-evolving systems exert dynamic impact on the landscape. 

Ruggedness expresses the degree to which attributes of the task’s paths and end state jointly de-
termine fitness. At one extreme, fully decomposable, each attribute contributes to fitness inde-
pendently. For example, a point value for each question in a test might be added to determine the 
final score (fitness) of a test. At the other extreme, chaotic, only the specific combination of at-
tribute values tells you anything about the state’s fitness. For example, the mapping of ingredients 
and preparation techniques to the tastiness (fitness) of a particular recipe may have some limited 
decomposability. For example, an individual may particularly like the dominant ingredient 
(higher fitness) or may be allergic to another (extremely low fitness). But, for the most part, it is 
the combination of ingredients that is the most important determinant of fitness. Furthermore, 
highly rugged tasks necessarily exhibit many local fitness peaks—that is essentially a mathemati-
cal property of ruggedness, as explored by Kauffman (1993).  

The impact of ruggedness on the design task can be quite significant. Low ruggedness design 
problems can generally be decomposed and solved incrementally. For high ruggedness design 
tasks, on the other hand, the major design challenge is to find an appropriate intended end state to 
target. Most IS design tasks—even those where familiarity with the technology is high—will in-
volve a task that is both complicated and objectively complex. This combinatorial or composi-
tional aspect of design has yet to be rigorously explored. 

Neuroscience and Complexity 
Figure 3 summarizes the three complexity dimensions in terms of unfamiliarity, path, and goal.  
There is some evidence that these dimensions map to different regions of the brain. 

Lack of Structure 
Prior neuroscience research classifies design tasks as ill-structured, in that there are typically no 
predefined behavioral sequences for task completion, the task is open ended (it may not be obvi-
ous when the task is completed), and there may be no well-defined criteria to assess whether the 
task goals have been met. In an fMRI study of initial problem structuring (study phase) and solu-
tion generation or execution (performance phase), Gilbert, Zamenopoulos, Alexiou, and Johnson 
(2010) draw contrasts between design and more structured problem solving tasks. They find 
greater right dorsolateral prefrontal cortex (PFC) activity during the study phase than in the per-
formance phase in ill-structured tasks. This result was consistent with Goel and Grafman (2000) 
who speculate that the right PFC is needed to generate missing information in the problem state-
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ment as well as define the task scope. This activity during the study phase is coupled with two 
other areas: the precuneus (which supports visual imagery) and the left frontal pole (which has 
been found to deal with ill-structured situations and self-generated, internal information represen-
tation). 

 

Figure 3: Complexity dimensions expressed in terms of familiarity, path and goal 

Utility and fitness 
Although objective complexity describes the ruggedness of the fitness landscape, the actual fit-
ness of most design outcomes cannot be rigorously determined until well after the artifact has 
been put into use. For this reason, we need to estimate the likely fitness of design artifacts 
throughout the design process. Utility provides a mechanism—often an unconscious one—for 
estimating the fitness of each alternative considered (Gill, 2010; Gill & Hevner, 2013). The study 
of utility also provides a bridge between two emerging economic sub disciplines: neuroeconomics 
(Politzer, 2008), where the study of utility is a central theme, and evolutionary economics, where 
our specific utility preferences are assumed to have evolved as a mechanism for maximizing our 
likelihood of survival (Gandolfi, Gandolfi, & Barash, 2002). This relationship between utility and 
evolution is important since it highlights one of the more important potential benefits of NeuroIS 
design: distinguishing preferences that are hard-wired (i.e., evolved over millennia) from those 
that are acquired (i.e., learned from experience).   

Utility is one area where neuroscience has conducted extensive studies and where commercial 
applications currently exist. For example, companies engaged in marketing research such as In-
nerScope, NeuroFocus, EmSense, and Affectiva attempt to measure the utility function of small 
groups of targeted consumers. The benefit of this approach is that it allows unconscious determi-
nants of choice to be observed more reliably. Their findings add to an already large existing lit-
erature that documents the economic inconsistency of many of the choices we make (e.g., Ariely, 
2008; Kahneman, 2011). 
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Complicatedness 
Realistic examples of tasks that are purely complicated—i.e., are familiar, have a known goal yet 
nevertheless involve a large problem space—are hard to come by. One particularly intriguing ex-
ample of research in this area involves a well-known study of right-handed male London cab 
drivers (Maguire et al., 2000). The research finds that these individuals have posterior hippo-
campi that are significantly larger than those of other drivers. What makes this relevant to task 
complexity is the nature of the task and training. Taxi drivers in London must undergo extensive 
training, learning how to navigate between thousands of places in the city. This training is collo-
quially known as “doing The Knowledge” and takes about 2 years to acquire on average. To be 
licensed to operate, it is necessary to pass a very stringent set of police examinations (Maguire et 
al., 2000, p. 4398). 

Since the task of driving a cab is inherently low in terms of goal selection (since the destination is 
provided by the passenger) and unfamiliarity is low by virtue of training, this represents one of 
those rare situations where the complexity of design— planning a route—seems to exist almost 
entirely along the complicatedness dimension. Among these drivers, the researchers find that the 
size of posterior hippocampi tends to grow with the length of driving experience (while that of the 
anterior hippocampi tends to shrink correspondingly), suggesting that the observed differences 
are more likely to be a function of performing the task as opposed to being a pre-existing basis for 
choosing the profession—which itself is interesting from a complexity preference standpoint. 

NeuroDesign Research Questions 
What is important to recognize is that nearly all design tasks will have task complexity from all 
three sources, albeit to varying degrees. One interesting question that NeuroDesign may help us 
answer involves the order in which the different complexity sources are addressed. For example, 
the pre-construction phases of a typical systems development lifecycle tends to reduce the com-
plexity sources sequentially: 

1. Unfamiliarity: Reduce uncertainty through feasibility analysis. 

2. Objective Complexity: Establish a targeted end state to address the ruggedness of possible 
outcomes. 

3. Complicatedness: Create a plan to manage the complications of actual development. 

Returning to the question that introduced this section, it is very likely that the relative levels of 
each task complexity dimension will impact the choice of approach. It is also possible, however, 
that the designer’s preference may exert considerable influence. It is here that NeuroDesign re-
search may come into play. 

Another important set of general questions arises when the interaction between the three task 
complexity dimensions are mapped against the subsequent three cognitive activities  of creativity, 
control, and collaboration, as shown in Table 2. In each individual box, NeuroDesign could be 
used to address three important questions: 

• To what extent can action and interpretation be localized to a specific area of the brain? 
Such localization could provide support for the overall construct validity of the complex-
ity/stages framework presented earlier in Figure 2. 

• To what extent do individuals exhibit a preference for different activities within each 
cell? Such findings would support the proposition that individual predispositions and 
preferences are likely to exert a strong overall influence on the design task. 

• To what extent are observed preferences learned by the individual or evolved? The find-
ings on this question would have important implications for the training and placement of 
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designers, since learned preferences could likely be modified through training whereas 
evolved preferences would better be handled by designers whose profile of preferences is 
most consistent with the nature of the design tasks that they were most likely to encoun-
ter. 

Table 2: Complexity Dimensions Mapped to Design Activities 

 
Creativity Control Collaboration 

Unfamiliarity 

Imagination vs. Study: D
we emphasize visualizing
the task in entirely differ-
ent ways or seek existin
knowledge to help us 
perform the task? 

o 
 

g 

Intuition vs. Analysis: 
When encountering unfa-
miliar choices, do we rely 
on feelings or attempt 
analysis? 

Collective vs. Specialized 
Problem Solving: Are all 
individuals presented 
with the entire design 
task or are elements of 
the task assigned to spe-
cialists? 

Objective  
Complexity 

Breadth-first vs. Depth-
First: Do we consider 
many possible goals be-
fore finalizing or do we 
rapidly settle on a goal 
then study its implica-
tions in depth? 

Transformative vs. Incre-
mental: Do we consider 
solutions that are radical 
departures from the status 
quo or start a possible 
solution then incremen-
tally refine it?  

Emergence vs. Compro-
mise: Do collaborative 
designs emerge holisti-
cally or are they the re-
sult of compromise be-
tween the preferences of 
participants? 

Complicatedness 

Exploratory vs. Con-
structed: Do we seek 
brand new paths towards 
our design goal or do we 
attempt to construct paths 
to a goal from known 
segments? 

Plan-Driven vs. Flexible: 
Are paths to artifact con-
struction planned in detail 
or are they expected to 
change continually as new 
conditions and knowledge 
arise? 

Tightly vs. Loosely Cou-
pled: Are subtasks on the 
path to artifact construc-
tion organized to require 
frequent communication 
or can they be performed 
independently? 

 

Over the multiple iterations of the design Build cycle the activities of problem structuring will 
require expert cognitive abilities in order to address the following types of complexity challenges:  

• Do designers exhibit an innate preference for purely complicated (large problem space, 
straightforward goals) versus purely objectively complex (ambiguous, uncertain goals, 
modest size problem space) problems? 

• Does frequent exposure to complicated problems with straightforward goals change how a 
designer processes other types of problems (e.g., London cabdriver example)? 

• Does working in rugged design environments (many local peaks, sharp fitness drop-offs) 
change how a designer processes design problems generally (e.g., structured problem solv-
ing studies)? 

• Is the entrenchment phenomenon often observed in experts more of a product of exposure 
to past environments or is it largely innate to the individual? 

A common theme of these questions involves the tradeoff between using past experience (e.g., 
rules learned from past designs and imitating successful designs) and actively exploring novel 
design combinations. This naturally leads to the next issue: what does neuroscience tell us about 
the relationship between the brain and creativity? 
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Producing Novelty – Creativity and Design 
Despite the long track record of research into creativity in a range of disciplines including psy-
chology, sociology, organizational behavior, and information systems, no definition of creativity 
is widely accepted. Bringing something new into being or the imaginative composition of existing 
elements comprise the core qualities of creativity. More recent work has added utility as a signifi-
cant mechanism and important quality (Gill & Hevner, 2013). Monolithic, undifferentiated defini-
tions and conceptualizations of creativity persist, failing to address the nuances evident in the 
stages of design presented in Table 2. We note a similar ‘inertia’ in the conceptualization of crea-
tivity as found for complexity: despite commentaries on its shortcomings, Rhodes’ (1961, 1987) 
models continue to guide research into creativity in a number of disciplines including IS. The 
tendency to conceive creativity as a single phenomenon or entity persists. Unifying the socio-
cognitive activities that enable creative works as a single, homogenous construct obscures the 
diversity of dimensions and stages identified in Table 2. 

This issue is significant in more than a semantic sense: it has affected research design in the neu-
roscience field for a number of years, engendering confusion and the persistence of a number of 
‘theoretic duds’ (Dietrich, 2007). The neural mechanisms underlying creativity are not well un-
derstood. Despite the sophistication of modern neurophysiological imaging technologies, the data 
they generate are often contradictory.  

The persistence of the undifferentiated creativity construct sustains the presumption that the crea-
tivity of an individual can be studied using scales arising from performance measures such as as-
sessment of divergent thinking and insight. ‘Thinking Tasks’ such as the Remote Associations 
Task (RAT) and the Alternative Uses Task (AUT) and other psychometric ‘tests’ provide empiri-
cal data. However, a recent review shows that creativity simply cannot be captured with any of 
the ‘relatively coarse’ theoretical proposals currently in use (Dietrich & Kanso, 2010, p. 823).  

Historically, creativity has been broadly categorized into three related research streams or sub-
domains: divergent thinking, the cognition of art and music, and insight. The literature on compo-
sition is found primarily in studies of cognition of art and music; it is even more diffuse than that 
on creativity. This is perhaps explained in part by the difficulty of defining an equivalent to crea-
tivity – the state or quality of being creative. The questionable coherence and viability of the ‘per-
formance measures’ used to date as surrogate metrics for creativity are compounded by the diffi-
culty in articulating or defining the state or quality of compositional ability. The term connotes 
abilities that span intuition, innovation, analysis, synthesis, and embodiment – these are the ac-
tivities that comprise what Couger, Higgins, and Mcintyre (1993) call ‘imaginative recombina-
tion’; the ability to ‘recruit’ neural resources to produce new combinations of information. 

Creativity as a Design Challenge 
The role of creativity in the design process is illustrated in the NeuroDesign model (Figure 2) as 
impacting the generation of design candidates from the problem space to the solution space. This 
flow provides the locus to more fully articulate the creative activities that both guide and provide 
momentum for design, the constructs that undergird them, and their neural correlates. Here, de-
sign research presents an opportunity to overcome the limitations of ‘universal’ but ultimately 
context-free tests such as RAT and AUT. 

The substantive and well defined processes and artifacts in design research provide contextual 
coherence to the creative design task at hand. Rather than being ‘remote’ the associations made 
during IS design are situationally bounded and comprehensive. Artifacts present a dynamic but 
cohesive frame of reference for a known problem space (Avital & Te’eni, 2009; Hevner & Chat-
terjee, 2010). To illustrate, models such as activity diagrams and class diagrams are complex de-
sign artifacts akin to blueprints. They ultimately represent the product of the Build phase but also 
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provide snapshots of the creative process as they are revised. In this respect they differ signifi-
cantly from the generic task representations provided by RAT and AUT. The generative capacity 
of these design artifacts overcomes the limitations of RAT, AUT, and similar instruments and 
their striving for generalizability.  

Both the challenge and the opportunity here are significant, not least because the processes of 
decomposition and abstraction that drive the development of class diagrams and other representa-
tions of problem spaces and candidate designs during the Build phase are becoming more pro-
tracted: increasingly speed, functionality, and virtualization of IS present an ever-growing range 
of design choices. For example, service-oriented architectures (SOA) present multi-dimensional 
and multi-media solution spaces. These rapidly expanding spaces provide an increasingly dy-
namic environment, ‘ecology’ or ‘press’ (Rhodes, 1987) within which creativity occurs. 

Class diagrams and similar artifacts are increasingly the primary ‘creations’ or ‘compositions’ of 
those who design and build information systems. They ‘bring something new into being’ by pro-
viding a medium through which the designer articulates their generative (or pre-potent) constructs 
in a logical model. The model is a blueprint and the precursor to an instantiation of a solution. 
The dynamic composition and re-composition that occurs as the model is revised shows that it is 
not just a ‘tool’ or a fully engineered artifact but an instance or snapshot of the creative and com-
positional process at a particular stage during design Build. The model is a ‘way station’ in the 
creative and sense making processes that mediates both design product and process. 

The study of the creation and composition of design artifacts in IS presents an opportunity to un-
derstand both the dancer and the dance – how individuals address the challenges of unfamiliarity, 
objective complexity, and complicatedness in generating candidate designs, and how pairs, teams, 
and other stakeholding groups collaborate and exercise control during the evolution of those arti-
facts. Class diagrams and other design Build artifacts that evolve through the four stages shown in 
Figure 2 present ‘self-contained’ contextualized associations relevant to a known problem space. 
Rather than being ‘remote’ (per RAT), they have potential as a context-specific media from 
which to localize and articulate specific ‘creativity constructs’. We believe this focus on represen-
tation of complex tasks will enable us to more coherently and consistently identify the cognitive 
brain functions and neural correlates that underlie ‘composed’ behaviors, and to explore whether 
the same correlates and brain functions support the inverse process of decomposition. The latter 
question is particularly pertinent to information systems since design research involves cycles of 
scoping, decomposition, analysis, synthesis, and re-generation.  

Neuroscience and Creativity 
The literature on the neural basis of creativity is fragmented, undermining consensus about the 
neural mechanisms underlying creativity. This is true for the literature on creativity as a whole 
and for the sub-domains of divergent thinking, cognition of art and music (composition), and in-
sight. Contradictory and otherwise inconsistent research findings give rise to a lack of coherence 
and limit the progress of theoretical discussion in the field.  

Creativity is viewed as a complex computational model of activities ‘in’ many areas of the brain 
(Dietrich & Kanso, 2010; Fink, Benedek, Grabner, Staudt, & Neubauer, 2007). However, the re-
sults from individual neurophysiological studies are often framed in terms of creativity in general. 
This is partly a matter of language – as discussed above –and also a matter of conceptual confu-
sion. Conceptualizing and treating creativity as if it is a single entity fails to accommodate its 
complexity and infers that it comprises a limited number of fundamental processes and brain 
structures underlying it. Dietrich and Kanso (2010) point out that this is likely to be a fallacy, and 
that “it is hard to believe that creative behavior in all its manifestations – from carrying out exqui-
sitely choreographed dance moves, to scientific discovery, constructing poems and coming up 
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with ingenious ideas of what to do with a brick - engages a common set of brain areas or depends 
on a limited set of mental processes” (Dietrich & Kanso, 2010, p. 845). Nevertheless, the ‘fallacy’ 
is perpetuated by the publication of results which, for instance, “…support the notion of right-
hemispheric superiority in creative thinking” (Mihov, Denzler, & Förster, 2010, p. 445]. 

 

Figure 4: Mapping of Creativity to Brain Regions  
(from Paulus et al., 2010) 
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The neuroscience literature has been used by Paulus, Levine, Brown, Minai, & and Doboli (2010) 
to propose a model that attempts to unify conflicting psychological perspectives on creativity as 
shown in Figure 4. Although some synthesis and structure is offered, the definitional and unit of 
analysis issues summarized in Table 2 remain. Is creativity a ‘mysterious result of spontaneous 
irrational processes’ or a ‘planned, deliberate result of a methodical problem solving strategy’ or 
an amalgam of both (Paulus et al., 2010)? The persistence of this question highlights the fragmen-
tation and incoherence in studies of creativity conducted to date in the neuroscience field. Studies 
of creative insight by Kounios et al. (2006) support the arguments for a methodical process put 
forward by Paulus et al. (2010).  

Insight is a significant construct in the production of novelty since it underlies both creativity and 
the notions of intuition and improvisation that comprise composition. Insight involves “preparing 
to strongly activate pre-potent candidate solutions (such as those presented as artifacts during the 
build phase of design) while also preparing to switch attention to non-pre-potent candidates (per-
haps abstractions that ‘build out’ from representation by a blueprint or similar design artifact) 
thereby enabling retrieval of weakly activated ‘solutions’ characterized by remote associations 
among problem elements” (Howard-Jones Blakemore, Samuel, Summers, & Claxton, 2005, p. 
889). 

Although clearly relevant to iterations in the build process, it has been argued that isolation of the 
neural correlates associated with insight undermines the ability to investigate creativity more 
comprehensively. Dietrich and Kanso (2010, p. 822) lament that “to most neuroscientists, the 
prospect of looking for creativity in the brain must seem like trying to nail jelly to the wall.” 

Although research on creativity in IS has a long history (e.g., Avital & Te’eni, 2009; Bilalić, 
Mcleod, & Gobet, 2008; Csikszentmihalyi, 1996; Dean, Hender, Rogers, & Santanen, 2006; 
Santanen, Briggs, & de Vreede, 2004; Satzinger, Garfield, & Nagasunduram, 1999) studies have 
been limited both in number and in the range of theoretic frameworks and research methods ap-
plied. In a recent review, Seidel et al. (2010) show that the majority of IS studies on creativity 
analyze the impact of IS use on the potential of individuals and groups to ‘compose’ or generate 
creative outcomes – but typically focusing on the artifact or product as causal ‘independent vari-
ables’. The emphasis is clearly on generative ‘fit’ – the attributes of the artifact or system – rather 
than their generative capacity (Avital & Te’eni, 2009). Studies also persistently characterize IT as 
a ‘tool’, an “engineered artifact, expected to do what its designers intend it to do” (Orlikowski & 
Iacono, 2001, p. 123). This rather narrow epistemological perspective gives rise to a prevalence 
of variance theories: this puts the ‘cart before the horse’ (Seidel et al., 2010, p. 234).  

Variance theories embody the IT artifact, masking the dynamics of the (socio-cognitive) activities 
underlying its complexity, creation, composition, and later use and evaluation as shown in Figure 
2. The limitation of variance theories is compounded by the conceptualization of the IT artifact as 
enabling the creative process and an emphasis on the outcome or product of the process rather 
than the context or environment (press) in which the process occurs. Although there has been 
some research into specific application contexts or ‘presses’ in studies of creative artists such as 
musicians (Eaglestone, Ford, Brown, & Moore, 2007) they are few and far between and do not 
address the process dynamics that characterize creativity.  

Research on composition in IS is even more sparse. Hungerford, Hevner, and & Collins (2004) 
report the evolution of a shared mental model among developers when searching for defects in 
design diagrams. Four distinct techniques (or what we might call compositional styles or choreo-
graphies) are found, the most effective of which was characterized by ‘fast-switching’ between 
the design artifacts into which defects had been seeded. The focus on defects as a means to inves-
tigate composition has further potential. For example, Bechtereva and Nagornova (2007) use er-
ror detection as the primary construct in their neurophysiological study.  
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NeuroDesign Research Questions 
Dietrich & Kanso (2010, p. 824) argue that “…only by systematically reviewing the evidence for 
different conceptions of creativity can the temptation to continue to appraise creativity as a single, 
simple mental process or brain region be overcome.” The artifacts produced during design Build 
present an opportunity to deepen our understanding of the creativity and composition processes 
and, perhaps, move toward some theoretic cohesion. The artifacts themselves embody both the 
generative capacity and the products of the creative process and as such provide instantiations of 
candidate designs and problem solutions that are much richer and potent than RAT and AUT. 

Design artifacts such as class diagrams provide a rich medium that provide the basis for pre-
clinical experiments to elicit specific constructs that individuals use as they bring these artifacts 
into being. Prior work in this area using cognitive mapping (Brooks, Davis, & Lycett, 2005), ver-
bal protocol analysis (Hutchins, 1995), and other techniques has successfully articulated shared 
mental models. Careful attention to the design of these pre-clinical experiments, perhaps using 
supplementary feedback techniques (e.g., C. Davis & Hufnagel, 2007) will enable the constructs 
undergirding the creation of these rich representational media to be validated prior to any physio-
logical investigation of their neural correlates. 

Exploring the evolution of artifacts such as class diagrams during the build process gives rise to 
two distinct but complementary research opportunities. First, the constructs and their inter-
relations that comprise the shared mental model of the class diagram or other artifact could be 
used as the basis for process tracing using EEG, fMRI, or other imaging techniques to identify the 
neural correlates underlying creativity. The four design Build stages in Figure 2 provide a sound 
basis for the use of specific context and cues, with specific concept representations and descrip-
tive features. These are central to Paulus et al.’s (2010) mapping of creativity to brain regions as 
seen in Figure 4. Process tracing is attractive since it can accommodate all the observable brain 
activity during a context- or problem-specific task, such as identification of an intersection entity 
to break a many-to-many relationship in an entity relationship diagram or a similar task to refine a 
class diagram. Process tracing is often used to complement comparative case study methods. 
Thus, scarce neuroimaging resources could provide the basis for triangulation of data from obser-
vational, interview, and other studies involving a larger sample size. 

Second, and perhaps more importantly, such pre-clinical experiments would articulate the frame 
of reference or mental model used by designers during the Build phase. This would provide the 
basis for the development of a nomological network for complexity, creativity, and composition. 
The potential contribution here is substantial: in addition to consolidating the validity of existing 
and newly elicited constructs and the relationships between them as outlined in Table 2, this 
would broaden the focus of research into creativity, the centripetal force driving the four stage 
design Build cycle and knowledge generation and ‘growth’ modeled in Figure 2.This, in turn, 
would provide insight into design research cycles substantially beyond the bounds of ‘familiar’, 
routine design to explore the realms of design improvement, invention, and exaptation rather than 
limiting empirical work to the evaluation of a priori constructs drawn from prior studies depend-
ent largely on variance theories (Greenberg & Dickelman, 2000). 

Additional research questions surrounding creativity might include: 

• Why do some designers gravitate towards imitation while others gravitate towards explo-
ration?  

• Why do some designers prefer to incrementally add to the existing problem space 
whereas others prefer to restructure or start from scratch? 
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Managing Refinement – Control and Design 
A student once asked Linus Pauling, “Dr. Pauling, how does one go about having good ideas?” 
He replied, “You have lots of ideas and throw away the bad ones” (Csikszentmihalyi, 1996, p. 
116). Effective design innovation requires more than just the generation of many creative ideas. 
Many creative individuals waste time, energy, and resources chasing infeasible and unprofitable 
hunches into blind alleys. Successful innovation also requires the intellectual control to refine 
creative thinking into practical solutions. Such control is dependent on the cognitive skills of rea-
son and judgment that can be investigated via neuroscience. 

The development of effective and efficient IT system designs provides many examples of the 
need for controls. Mills (1983), in his early ground-breaking work on chief programmer teams, 
emphasized that one mind must have intellectual control of the software design for a project to 
move forward and be successful. He focused on the human mind’s ability to use abstraction to 
build hierarchical mental models of the evolving system. The current enthusiasm for agile devel-
opment methods appears to move away from controlled, disciplined processes. However, recent 
research grounded in control theory (Ouchi, 1979) has shown that agile methods employ a wide 
range of controls; termed emergent outcome controls (Harris, Collins, & Hevner, 2009). Two ex-
amples of emergent outcome controls are scope boundaries in which a development task is 
bounded by a small, well-defined functional requirement or time limit and ongoing feedback at 
regular time intervals to rapidly incorporate corrections and improvements. 

Control as a Design Challenge 
In essence, maintaining intellectual control of the evolving Build activities in design research re-
sults in the reduction of uncertainty. Drawing from our ideas of problem structuring and complex-
ity, we identify two types of uncertainty: 

• Reducible Uncertainty – The problem can be decomposed into sub-problems that can be 
addressed independently via control techniques of learning, planning, abstraction, solu-
tion specification, and composition of solutions. 

• Irreducible Uncertainty – The problem has no clear decomposition and must be solved as 
a whole via control techniques like scenario generation and risk management. 

A major challenge in problem structuring is differentiating between these two situations and then 
applying the most effective controls in order to refine the selected design candidates to use arti-
facts as shown in Figure 2. The process of design refinement asks the following key Build ques-
tions:  

• Is the design feasible? - Can the proposed design be implemented and does the proposed 
design meet the requirements? Building feasibility artifacts moves designs across the un-
known/known partition. 

• Does the design have value? - Does the design offer benefits unmatched by competing 
candidate designs? Here the objective becomes to establish an ordinal valuation that can 
be used to rank candidate designs. 

• How can the design be most effectively represented? – How can we best communicate the 
intricacies of the design to collaborators, implementers (e.g., architects, programmers), 
and other stakeholders? 

• How best to construct the actual use artifacts? How do we guide the construction of the 
use artifact? As examples, a blueprint is a construction artifact that serves to guide the 
physical construction of a house; source code is a construction artifact that serves to gen-
erate the programs that are distributed to users. 
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Neuroscience and Control 
The above questions are answered by the skilled use of the human cognitive facilities of reason 
and judgment. 

Reason 
Human reason reflects thinking in which plans are made, hypotheses are formed, and conclusions 
are drawn on the basis of evidence in the form of data, past experience, or knowledge (Carson, 
2010). While creativity often calls for divergent thinking to break out of mindsets; reason calls for 
convergent thinking to refine ideas into practical artifacts and actions. Moving design ideas from 
‘blue sky’ to artifact instantiations requires goal setting and a plan to answer the Build questions 
above. 

Neuroscience studies have located human reasoning centers in the left dorsolateral prefrontal cor-
tex (DLPFC) which is the area that controls planning, reasoning, and decision making. The right 
DLPFC featuring more holistic insight comes into play when problems involve larger amounts of 
irreducible uncertainty (Charron & Koechline, 2010; Howard-Jones et al., 2005). Other areas that 
activate during reasoning and problem solving are the brain centers (e.g., angular gyrus, su-
pramarginal gyrus, Wernicke’s area) that integrate information from the senses and transmit this 
information to the DLPFC. Another factor critical to effective cognitive reasoning is the increased 
presence of arousal neurotransmitters, such as glutamate, dopamine, and norepinephrine. Such 
arousal is associated with increased high frequency/low amplitude beta wave activity in the 
DLPFC (Parasuraman, Warm, & See, 1998). 

Judgment 
Closely related to reason is the human cognitive facility to judge, or evaluate, ideas at various 
design stages of the Build process. The goal of judgment is to predict the future; to predict which 
candidate designs will be better than others. Without the ability to narrow the field (i.e., design 
space) it would be impossible to refine many good ideas down to one ‘satisfactory’ design arti-
fact. This is a very tricky area of human cognition since it involves self-criticism, self-esteem, and 
motivation. However, studies have shown that humans are capable of making effective and rapid 
judgments based on first impressions (e.g., Ambady & Rosenthal, 1993). Beyond first impres-
sions, design evaluations in design research depend on the rigorous definition of utility functions 
that estimate the values of candidate designs in order to facilitate the ranking of alternatives (Gill 
& Hevner, 2013). 

During the judgment activities of design, the brain is characterized by active evaluation, focused 
attention, and impersonality (Carson, 2010). Similarly to the reasoning brain, the judging brain 
shows strong activity in the left DLPFC as decision-making and analytic activities dominate 
(Srinivasan, 2007). Additional activities are seen in the orbitofrontal cortex (OFC) and anterior 
cingulate cortex (ACC) which are related to the judgment of positive and negative impacts of 
events. As noted in the complexity section, emerging research in neuroeconomics also brings into 
play the nucleus accumbens (the ‘reward’ center of the brain) to better understand how we cogni-
tively evaluate alternatives and make decisions that make us feel good about ourselves (Sanfey, 
Loewenstein, Mcclure, & Cohen, 2006). 

NeuroDesign Research Questions 
There are a number of research challenges as we attempt to better understand the relationships 
among complexity, creativity, and control to improve design processes. Some examples include: 

• Planning effective design processes: Within the management literature, it has been ob-
served that many entrepreneurs exhibit a distinctly different problem-solving approach 
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than that used by the traditional manager (Sarasvathy, 2003). Framed in task complexity 
terms, managers tend to reduce unfamiliarity (e.g., through analysis, model building), se-
lect a goal, and then plan (to deal with complicatedness). Entrepreneurs, described as ef-
fectuators, tend to reduce all three sources of task complexity in parallel through an itera-
tive process and set of controls not unlike that used in agile methods. Determining the 
relative contribution of brain-driven reasoning and judging activities and the task com-
plexity dimensions outlined in Table 2 would be useful in helping us to better understand 
the choices we make and, perhaps, improve them. 

• Understanding the potential impact of obstacles on design: A recent series of psychologi-
cal experiments have suggested that introducing obstacles and additional uncertainties in 
a task can actually improve the quality of problem solutions (Marguc, Förster, & Van 
Kleef, 2011). From a design complexity perspective, this might be viewed as adding con-
straints that increase complicatedness to force a broader consideration of possible goals, 
since the obstacles have the effect of making the most obvious or entrenched goals harder 
to reach. This perhaps moves some brain activities from the left DLPFC (analytic) to the 
right DLPFC (insight) to deal with a more complex and holistic problem. Understanding 
how such obstacles change problem solving processes in the brain might offer clues as to 
how to make strategic use of obstacles to produce more innovative designs.  

• Understanding the impact of interference by competing designs: An interesting pair of 
experiments has been conducted demonstrating the Einstellung effect, whereby early so-
lutions that are good prevent considerations that are better (Bilalić et al., 2008). The im-
plications for IT systems design are self-evident. A better understanding of how such 
processes operate could be particularly valuable in design situations where ruggedness is 
high, since these circumstances necessarily produce many local peaks that are likely to be 
far less fit than the highest peaks. How do we provide controls in the design process to 
continue the search beyond local maxima? This will require a search process that effec-
tively iterates between divergent thinking (creativity) and convergent thinking (control). 

Briefly, a few additional research questions involving control are: 

• Why do some designers prefer a design-then-build philosophy (e.g., waterfall) versus a 
design-as-you-build philosophy (agile methods)? 

• Why do some designers prefer decentralized control (e.g., component-based systems) 
while others seek more centralized design (e.g., integrated systems)? 

Achieving Consensus – Collaboration and Design  
Design research projects are performed by teams with diverse skill sets and an equally diverse 
range of stakeholders. Producing a satisfactory design artifact for release into an application con-
text brings the cognitive challenges of collaboration among members of the research team and 
effective communication to and from stakeholder audiences into sharp relief. The collaborative 
aspect of NeuroDesign is at the intersection of social cognitive neuroscience and collaborative 
design research based on distributed cognition. In collaborative design tasks the goal is collabora-
tive emergence of a design based on contributions from the design team. In a well-functioning 
and successful design team, individuals’ “talent, energy, and skills are integrated into a team, and 
this collective capacity to innovate becomes greater than the sum of individual contributions” 
(Chen, 2007, p. 239). The research tools of neuroscience provide an opportunity to better investi-
gate the collaborative design work of teams and how best to form them. 
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Collaboration as a Design Challenge 
A particular challenge of this kind of NeuroDesign study is that both the cognitive activities of 
individuals in a team as well as external manifestations of collaboration (e.g., discussions, design 
representations) must be measured and combined to understand the phenomenon. For example, 
neuroscience research on the neural correlates of specific kinds of complex tasks like problem 
structuring can assist in investigations of the principle of problem identification in design re-
search: developing technology-based solutions to business problems that are relevant and impor-
tant (Hevner et al., 2004). In particular, as we study collaborative design, this knowledge about 
brain activity related to specific Build processes like problem structuring will enable detailed 
measurement of when individuals are working on the design process, and if and when those cog-
nitions are shared. 

Social cognitive neuroscience is congruent with distributed cognition research, since this more 
traditional cognitive science research area investigates knowledge representation both inside the 
heads of the individual and in the world, and the propagation of knowledge between individuals 
and artifacts (Gregor & Hevner, 2013).  Flor and Hutchins (1991) propose that cognition should 
be looked at as a distributed phenomenon – how knowledge is represented both internally (inside 
one’s head) and in the world (environment, culture, social interactions); the transmission of 
knowledge between different individuals as artifacts; and the transformations through which ex-
ternal structures go when acted on by individuals and artifacts.  Inclusion of these individual and 
shared processes in our NeuroDesign model (Figure 2) focuses our research efforts on increasing 
our understanding of how intelligence is exhibited at the systems level as well as at individual 
cognitive levels. For example, Flor and Hutchins (1991) study how two programmers coordinate 
the task of software maintenance, utilizing distributed cognition to explain their collaborative be-
havior.  

Nardi (1996) notes that distributed cognition is concerned with representation – both inside and 
outside the mind.  Because of this focus on both internal and external representations, much atten-
tion is paid to studying these representations.  For example, in a study of sailors navigating a ship, 
Hutchins (1995) identifies a number of principles: cognition is mediated by tools; the critical role 
of the tool mediation in cognition means that cognition is rooted in the artificial; and cognition is 
a social affair that involves delicate variations and shades of communication learning and inter-
personal interacts. Nardi (1996), drawing upon Hutchins’s work, stresses the importance of 
“functional systems,” or systems that are made up of a person’s or a group’s interaction with the 
tool. In our NeuroDesign model, the ‘tool’ is the medium for the articulation and sharing of pre-
potent candidate designs, mediating both creative and collaborative processes.  Thus the model 
(Figure 2) accommodates the social system as an important unit of analysis. The compositional 
interdependencies of individual, tool, and artifacts; social and communication interactions; and 
the work environment that constitute the  complex, interacting systems (Greenberg & Dickelman, 
2000) in which design Build takes place are brought into focus.   

Understanding how a team collaborates on the design task and comes to consensus thus becomes 
a task of measuring what is observable and matching the internal and external evidence to under-
stand the team’s work. Brain activities of individual members of a team can be classified by prior 
neuroscience research to provide insight into the nature of task-related thought and more socially-
focused thinking. Recordings of discussions between team members, their tool usage, and any 
external representations like models can be analyzed for evidence of sharing, disagreements, or 
conflict as the team moves to consensus on the design. 
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Neuroscience and Collaboration 
Some social neuroscience studies investigate whether forming teams based on understanding dif-
ferences in brain activity improves performance. For example Woolley et al. (2007) note that 
within individuals “different brain systems must work together”, and posit that with teams it is 
important to examine “the ways in which the brain systems in different members’ heads function 
together” (p. 102). They looked at matched and mis-matched pairs (based on matches between 
team members with abilities needed for the task) working on a novel problem solving task that 
required both spatial and navigation abilities, and they found a benefit from fit between task and 
team member abilities, as well as higher levels of collaboration. The highest performance was by 
teams where individuals were assigned task roles congruent with their abilities, but was equaled 
by teams with incongruent role assignments who had members with the needed abilities (func-
tional diversity) and high levels of collaboration. They conclude that: 

“the results are compatible with a view of brain evolution that stresses the role of social 
interactions. Different brain systems may have evolved not only to work together within a 
single head, but also to work together between heads - that is, so that different systems 
are not only ‘‘plug compatible’’ within a single brain, but also across brains.” (Woolley 
et al., 2007, p. 103) 

In addition, social cognitive neuroscience investigates the biological correlates of a wide range of 
social processes, such as those needed for collaborative design. This research finds a clear divi-
sion between the neural correlates of tasks that are internally-focused (attention to the mental, 
emotional, and experiential characteristics of the self or perception of those in others) and those 
that are externally-focused (attention to the physical and visual characteristics of others, oneself, 
or interactions between the self and others). The lateral frontotemporoparietal network is acti-
vated by external focus, and the medial frontoparietal network is activated by internal focus. 
While collaborative design requires external focus on external representations and the design arti-
fact, it may also involve internally-focused cognitive activity, such as trust in others in a design 
team (Lieberman, 2007). 

Figure 5 is an example of how a cognitive approach to the collaborative aspects of design can be 
employed to investigate the design principles of problem identification and representation. Some 
of the relationships are conceptualized as iterative, since what happens in collaboration is likely 
to influence subsequent cognitions by individuals, which then, in turn, impacts the collaboration. 
Such research will require a combination of research methods, including neuroscience techniques 
like fMRI to measure brain activity; task analysis to identify all needed knowledge, skills, and 
abilities; measurement of individual knowledge, skills, and abilities; recording and analysis of 
team interactions; collection and evaluation of all external representations of the design (e.g., on 
whiteboards and paper); logging of use of tools; and evaluation of design outcomes. Such multi-
ple methods enable a view of the entire “functional system” of collaborative design. 

NeuroDesign Research Questions 
The central research challenge regarding collaborative design is to understand how to assemble 
and support design teams that interact effectively to produce great designs. To meet this challenge 
we must study how individuals work alone and together on all design processes, as they solve 
complex problems in creative ways with appropriate controls. Such research requires methods 
that reveal individual cognitions (e.g., neuroscience); the knowledge, skills and abilities that each 
individual brings to the team (e.g., survey measures); team interactions and representations (e.g., 
video and audio recordings of interactions, collection of models and other external representa-
tions); as well as design outcomes (e.g., design artifacts). This multi-level and multi-method ap-
proach can leverage neuroscience knowledge to open up the black box on individual cognition 
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along with the more traditional ways of investigating collaboration to draw a more complete pic-
ture of collaborative design. 

Figure 5: The Collaborative Design Process 

Some research may focus on the contrasts between individual and collaborative design settings: 

• Why do some designers prefer collaborative design (e.g., design teams, pair program-
ming) whereas others seem to prefer working alone? 

While other research may investigate design team formation or processes: 

• For design tasks, what team member characteristics create the best combinations to 
achieve functional diversity? 

• How does tight collaboration impact the choices made by designers (e.g., does the need 
to move more of the design elements into the symbolic problem space in order to pro-
mote sharing change the way our brains are activated during the design process?) 

• Can effective knowledge sharing during design interactions overcome lack of congruency 
between team members in their knowledge, skills and abilities? (Weedman, 2008). 

The Exciting Potential of IS NeuroDesign Research 
The potential relationship between cognitive neuroscience and IS design research could be one of 
great synergy. Cognitive neuroscience techniques such as fMRI provide considerable face valid-
ity in their ability to relate specific cognitive activities to specific regions of the brain. However, 
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we face at least three significant challenges in the development of a NeuroDesign research pro-
gram. 

1. Prioritizing the myriad cognitive activities in which we engage for study. Humans exhibit 
so many different types of processes related to design thinking that it could decades—if 
not centuries—before we acquire full understanding of all design activities that involve 
conscious or unconscious thinking. Isolating and prioritizing cognitive activities for study 
is difficult. 

2. Addressing the problem of experimental context. The most sophisticated approaches to 
studying the brain in action involve such intrusive experimental settings (e.g., an MRI 
tube) that the generalizability of any experimental results must rightfully be questioned. 
The narrower the cognitive task being investigated, the more likely it is that researchers 
will be able to devise experimental settings that minimize observer impact on the subject. 

3. Justifying the value of the experimental findings. While it may seem self-evident to re-
searchers that understanding is a worthy goal in and of itself, the same sense of value 
may not be present on those who pay the price of research. The question of how better 
understanding the brain operation ultimately improves our abilities must therefore be a 
practical concern to all researchers seeking to justify their findings and fundings. 

NeuroDesign research conducted using the framework that we have presented offers benefits with 
respect to all three challenges. The Figure 2 model breaks down the design problem into more 
primitive task types and provides a justification—based upon observed behaviors—that they can 
be important elements of the design process. This approach also yields tasks that are more readily 
studied under experimental conditions. Perhaps most importantly, in a world where routine tasks 
are frequently offshored, the design process remains a critical source of competitive advantage to 
those countries most heavily invested in neuroscience research. Given that many design behaviors 
commonly observed—such as entrenchment—seem likely to inhibit design quality, better under-
standing the sources of these behaviors could provide an important means of sustaining existing 
advantage. 

The benefits of collaboration between design research and cognitive neuroscience work in the 
opposite direction, as well. As shown in Figure 2, real-world design is dependent upon human 
facilities in areas such as creativity, control, and collaboration that have a large non-symbolic 
component. Broken down further, complexity-driven constructs such as utility, ambiguity, and 
uncertainty represent feelings, as do constructs such as intuition and empathy which seem central 
to how we choose alternatives and evaluate designs. Being non-symbolic, we need to be skeptical 
of explanations offered by designers. As a practical matter, this means that models (such as that 
presented in Figure 2) need to be validated lest they be treated as mere speculation. 

We posit that NeuroDesign studies represent a mechanism for verifying models that have been 
induced from behaviors. To the extent that we observe unique or characteristic pathways for dis-
tinct processes in our models, we have another basis for arguing for their validity. Where ex-
pected activities prove to be indistinguishable, it suggests that our existing models need to be re-
considered. In a very real sense, we can view this model building and validation process as itself 
being an iterative design process. What cognitive neuroscience offers us is a basis for trimming 
and/or expanding our model ‘designs’. Without it, design research is likely to evolve mainly 
through building speculative models on top of other speculative models, a process that is more 
likely to be driven by fad than by a process of rigorous scientific verification and systematic ac-
cumulation of knowledge. 

In summary, we see advancements in cognitive neuroscience and IS design research as being 
strongly supportive of each other. If IS design researchers can feed neuroscience researchers in-
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teresting and important tasks to study, the neuroscience field as a whole will benefit from the in-
sights. If neuroscience provides us with interesting observations in response, we can tune—or 
completely restructure, if necessary—our models of the cognitive mechanisms through which IS 
design takes place. As participants in design research, our job is to make the questions we impose 
so compelling to the neuroscience community that we move to the head of the queue. 

Role of Design Science and NeuroIS within Informing Science 
Although the present paper specifically focuses on the potential application of neuroscience to 
information systems design, it is equally applicable to the broader informing science transdisci-
pline. Indeed, since its very inception (i.e., Cohen, 1999; Gill & Bhattacherjee, 2007), the study 
informing science has been presented in terms of three layers: 

1. A design layer: The layer at which new informing systems architectures are designed. 

2. A construction layer: The layer at which informing system instances are created accord-
ing to templates developed in the architecture layer. 

3. An instance layer: The layer at which individual informing systems operate. 

The informing science transdiscipline emerged to encourage the holistic study of all three layers. 
With relatively few exceptions (e.g., Kuechler &Vaishnavi, 2011), however, the vast majority of 
empirical research in the field has focused on instance-level studies. The potential applicability of 
research questions such as the ones proposed in the present paper to informing science should be 
self-evident. Thus, the paper should be viewed as encouraging further research into the all-
important design layer. Moreover, by incorporating the collaborative and social aspects of design 
into the proposed framework, the issues presented here may well have applicability to informing 
systems that evolve—such as social networks—as well as systems that begin with a clear design.      

Conclusions 
The application of neuroscience to design and design science research, particularly as it applies to 
IS, is in its infancy but offers significant future prospects. Today’s state of the art in NeuroIS is 
focused on the evaluation of design. Even now, biometric tools are being applied commercially in 
marketing research to evaluate new product designs. As experience with neuroscience research 
grows, these may be applied to the more objectively complex and complicated Build problems 
that we frequently encounter in IS design contexts, in other words, NeuroDesign research. Our 
principal contribution in this essay is a formal conceptual model of the design process and the 
human cognitive activities that interact in formative ways in the process to deal with the chal-
lenges of complexity, creativity, control, and collaboration. 

The exciting prospects of NeuroDesign come from the range of design activities to which they 
could, in theory, be applied. Determining the socio-cognitive processes involved in resolving goal 
ambiguity (objective complexity), generating novelty (creativity), managing the overall process 
(control), and integrating the work of many (collaboration) should help us better understand in-
consistencies to which our reasoning architecture is vulnerable and the degree to which elements 
of that architecture are physiologically fixed versus being learned. Such understanding, in turn, 
can be applied to a diverse set of questions that include: deciding how (and who) we should train 
for different types of design tasks, recognizing and avoiding entrenchment in design processes, 
and establishing environments that encourage high levels of creativity and fruitful collaboration. 
Improving such capabilities is particularly critical for highly developed economies, such as the 
U.S. and Western Europe, where non-design IT activities are frequently being offshored to coun-
tries where they can be performed less ‘expensively.’ 
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Finally, it is becoming clear that brain science has become a major research priority for the scien-
tific community, with recent proposals directing billions of dollars towards this effort in both the 
U.S. and Europe. The potential flood of resources has raised concerns, however. Past research has 
been very successful in producing huge quantities of neuroscientific data. It has been far less suc-
cessful in translating that data into understanding. A recent article in The New Yorker described 
the situation as follows: 

“Sometimes people collect the data before they are able to develop good theories, but the 
best experiments are often ones that help scientists sift through competing theories. Un-
fortunately, in two preliminary proposals in the scientific journals (Neuron and Science), 
there has been relatively little discussion of what specific hypotheses will be tested, or 
how, with just a few words written so far about how to interpret the ‘data deluge’ that is 
to come.” (Marcus, 2013) 

In this paper, we have endeavored to propose and justify a set of interesting questions—questions 
that readily translate themselves into testable hypotheses, such as “Does the entrenchment that 
occurs in the design process manifest itself in distinctive patterns of brain activity?” or “Can indi-
vidual preferences for imitation versus exploration in design be distinguished using fMRI data?”, 
and so forth. Design as a critical source of competitive advantage makes these important ques-
tions; ones that deserve a prominent place at the table of future brain research. It is our firm belief 
that the research areas that pave the way for future investigations by building a set of questions 
that can, and should, be answered by neuroscience will play a significant role in the advancement 
of our understanding of the brain. If these questions can be the ones posed by NeuroIS research-
ers, then our own field will benefit immeasurably from this research as well. 
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