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ABSTRACT 
Aim/Purpose We establish a conceptually rigorous definition for the widely used but loosely 

defined term “fitness”. We then tie this definition to complexity, highlighting a 
number of  important implications for the informing science transdiscipline. 

Background As informing science increasingly incorporates concepts of  fitness and com-
plexity in its research stream, rigorous discussion and definition of  both terms 
is essential to effective communication. 

Methodology Our analysis consists principally of  a synthesis of  past work in the informing 
science field that incorporates concepts from evolutionary biology, economics 
and management. 

Contribution We provide a rigorous approach to defining fitness and introduce the construct 
“extrinsic complexity”, as a measure of  the amount of  information required to 
predict fitness, to more fully differentiate this form of  complexity from other 
complexity constructs. We draw a number of  conclusions regarding how behav-
iors under low and high extrinsic complexity will differ. 

Findings High extrinsic complexity environments are likely to produce behaviors that 
include resistance to change, imitation, turbulence and inequality. 

Recommendations  
for Practitioners 

As extrinsic complexity grows, effective search for problem solutions will in-
creasingly dominate employing recommended solutions of  “best practices”. 

Recommendation  
for Researchers  

As extrinsic complexity grows, research tools that rely on decomposing individ-
ual effects and hypothesis testing become increasingly unreliable. 

Impact on Society We raise concerns about society’s continuing investment in academic research 
that discounts the extrinsic complexity of  the domains under study. 

Future Research We highlight a need for research to operationalize the concepts of  fitness and 
complexity in practice. 
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INTRODUCTION  
A recent stream of  research in informing science is built around a conceptual scheme whereby in-
forming is treated as a process through which a client increases fitness on a complex landscape (e.g., 
see Gill, 2016a and 2016b for a summary). In this research, the meaning of  fitness—a term bor-
rowed from evolutionary biology (e.g., Kauffman, 1993)—is more-or-less assumed. The complex 
landscape model then builds upon that concept, as are the conclusions that we draw from the model. 
The rigor of  this entire research stream is heavily dependent upon one’s ability to define fitness in a 
correspondingly rigorous manner. 

In this article, we take a systematic look at the concept of  fitness and how it could impact informing 
processes. To develop this conceptual framework, we start with a model in which an agent or entity is 
presumed to occupy a position determined by a set of  attributes known as a state. That state forms 
one position in a broader landscape of  all possible states. From there, we propose a series of  defini-
tions: 

1. We define realized fitness as the measurable value that signifies the growth or decline of  a col-
lection of  entities occupying a set of  specific states over a defined period of  time. 

2. We define the fitness of  a state to be the expected value of  subsequent realized fitness for all 
entities occupying that state under all possible scenarios (including those with which we have 
no means of  predicting or measuring an expected value). 

3. We define a fitness proxy to be any value that we can measure or observe that we perceive to 
be closely correlated to the fitness of  a state. 

4. We define extrinsic complexity to be the amount of  information needed to capture the relation-
ship between all possible states in a landscape and their associated fitness values. 

With these definitions in place, we then consider how increases in extrinsic complexity are likely to 
impact the behavior of  entities that reside on a fitness landscape. We note that there are two types of  
potential entities that can be modeled. The first are entities that achieve fitness through selective sur-
vival and reproduction across generations, without conscious adaptation (i.e., survival of  the fittest). 
The second are adapting agents, entities that can actively pursue a change in state in order to seek high-
er fitness. The latter prove to be of  particular interest since the decision to become informed repre-
sents a particularly important approach to adaptation. 

After identifying characteristic behaviors of  adapting agents on high extrinsic complexity landscapes, 
we look at the potential implications for informing. What we find is that achieving effective inform-
ing in such circumstances may entail substantially different approaches to the informing process. In-
deed, informing techniques built around the groups that naturally form on such landscapes, as op-
posed to a pure focus on the individual agent, may be required if  effective informing is to take place. 

WHAT IS FITNESS? 
The term “fitness” is used in many contexts, ranging from models in evolutionary biology (e.g., 
Kauffman, 1993) to common parlance (e.g., physical fitness, fitness reports). Typically, it refers to 
some measure of  an entities suitability (or “fit”) with a particular context. McCarthy (2004, p. 127-
128) provides a review of  the term’s origins and identifies a number of  management-related applica-
tions of  the term, including: 

organisational development and change (Beinhocker, 1999; McKelvey, 1999; Reuf, 1997), the 
evolution of  organisational structures (Levinthal, 1996), innovation networks in the aircraft 
industry (Frenken, 2000) and technology selection (McCarthy and Tan, 2000; McCarthy, 
2003).  

We are by no means alone in noting the fuzziness of  fitness. A review of  the term’s usage in the con-
text of  a study of  its potential applicability to manufacturing strategy concluded the following 
(McCarthy, 2004, p. 129): 
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Although the term fitness is used regularly in biological and evolutionary publications, its 
definition and use is unclear. This ambiguity has been transferred to those management and 
strategy papers that discuss the relevance and insights that fitness landscape theory could of-
fer to management scholars. It seems that most authors assume there is a universally under-
stood meaning of  the term and therefore do not provide a working definition.  

In choosing not to offer his own precise definition, the same author concludes the following (McCar-
thy, 2004, p. 131): “Ultimately, the term fitness is used tautologically, because what exists must be fit 
by definition.” Having initially run into the same problem, we sympathize. This situation, however, 
presents an obvious concern. To what extent should we be comfortable building conceptual schemes 
upon a construct that we cannot define? 

In this section, we attempt to construct a definition of  a fitness construct that avoids the tautology 
problem just identified. We do so through a series of  steps: 

1. We characterize the contexts where the use of  a fitness construct is most appropriate. This is 
done through defining abstract sets of  entities, separated by a period of  time, for which the 
number of  member entities can either increase or decrease over time. 

2. We present a model where “fitness” plays the role of  an unobservable intermediate variable 
that is determined by an entity’s state and leads to an observable value, realized fitness, meas-
ured by the ratio of  the number of  entities in the set at the end of  the period divided by the 
initial number of  entities. 

3. We explore the concept of  a fitness proxy, an observable variable that adapting entities may 
use in place of  fitness when attempting to increase realized fitness. 

Throughout this derivation we provide examples that may be helpful in clarifying the concepts being 
introduced.  

FITNESS: THE RELATIONSHIP BETWEEN INITIAL AND FINAL SET COUNTS 
In proposing our own approach to defining fitness, our goal was to remain as faithful as possible to 
its biological counterpart. In biology, fitness consists of  two key elements: survival and reproduction. 
Both of  these can be presented in terms of  a set, the population, for which two membership counts 
can be taken, separated by a specified period of  time—often referred to as a generation. The duration 
of  a generation will normally be determined by taking into account the nature of  the entities. For 
example, if  you were to study certain periodic cicadas, you would need to recognize that a dormancy 
period of  17 years exists between the disappearance of  one brood and the emergence of  its progeny. 
Between those two events, the population would essentially be zero. Therefore 17 years would be an 
appropriate duration for a generation and multiples of  17 years would be needed if  an accurate sense 
of  population growth or decline were to be achieved. 

The nature of  the set and duration selected would also determine the degree to which survival, re-
production or both are emphasized. For example, in the cicada example the reproduction process 
dominates entirely. If  we were to look at another set of  entities, such as the violins made by Antonio 
Stradivari, we have a set whose membership is constrained, since he ceased making violins by the 
mid-18th century. Thus, if  we were to track that set’s membership over time, we would be looking 
strictly at the survival aspect of  fitness. The sets and durations we define can also combine both sur-
vival and reproduction. For example, if  we were to look at the fitness of  a particular city in terms of  
its population set, our “survival” process—which looks at what happens to the original membership 
of  the set—would be negatively impacted by deaths and individuals moving out. Our “reproduction” 
process, referring to members of  the final set not present in the original set, would be positively im-
pacted by births and individuals moving in. 

The earlier Stradivari example also illustrates how a context can be established for looking at the fit-
ness of  artifacts, not just biological entities. In fact, framing fitness-appropriate contexts in terms of  be-
fore and after sets puts relatively few limitations on its applicability. It is its flexibility that makes fit-
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ness particularly relevant to informing science. If  we define our sets in terms of  the number of  indi-
viduals holding a particular idea, we can consider the “fitness” of  a particular idea or belief, a concept 
deriving from the notion of  a meme (Dawkins, 1976). We might also use fitness—once we have de-
fined it—as a basis for comparing alternative informing approaches. In this example, we might 
choose a number of  before and after sets of  individuals, each of  which would experience a different 
informing intervention intended to convey a particular concept. A ratio of  the number of  individuals 
who have acquired that concept after each intervention over the number who had already acquired 
the concept prior to a particular intervention could then be established. These ratios could be inter-
preted as the fitness of  each intervention (generation) and could be compared. Alternatively, we 
could take the ratio of  individuals still holding their original beliefs after and before each interven-
tion. These could be interpreted as a fitness measure of  the original beliefs—with smaller values be-
ing indicative of  an effective intervention. 

To further generalize the contexts in which fitness might be appropriate, we can consider adapting 
our before and after set counts. Allowing fractional membership is one approach. Using a biological 
example, if  you were trying to define sets to trace the survival and reproduction of  a particular indi-
vidual’s set of  genes, you might approximate it with the following fractional memberships: 

• 50% membership to the individual’s children,  
• 25% membership to each of  the individual’s grandchildren,  
• 12.5% membership to the individual’s great-grandchildren and so forth.   

In this example, the “and so forth” will not go on forever. Eventually, the individual’s lines are likely 
to intersect on both the male and female sides. This would make the determination of  what consti-
tutes a set more complicated, but does not impact the underlying ability to frame the problem at issue 
in fitness terms. 

Another type of  generalization would be to allow weighted assignment to sets based on the presence 
of  specific attributes in each entity. This approach is particularly applicable to design and design sci-
ence (Gill & Hevner, 2013). In the world of  IT, for example, a particular artifact tends to become 
obsolete within a relatively short time—indeed, we use the biological term “generations” to refer to 
this ongoing process of  technology evolution. Despite this evolutionary process, particular features 
of  a design may persist considerably longer. For example, the PS/2 keyboard and mouse port con-
tinued to be incorporated into personal computers for a couple of  decades after IBM’s ill-fated line 
of  PS/2 computers was abandoned. To determine before and after set counts appropriate for deter-
mining fitness, we could choose a weight (wi) for each characteristic feature (ci). Assuming there were 
N artifacts in a particular set, the count at any given point in time would be specified by: 

∑ 𝑤𝑖 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ℎ𝑎𝑣𝑣𝑣𝑣 𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑖 𝑁
𝑖=1   

THE FITNESS MODEL 
Once we have established a generational context for which initial and ending counts can be estab-
lished, we can then turn to defining fitness itself. The most obvious approach would be to use a unit-
less (non-absolute) comparative measure, such as the ending/initial count ratio or the percentage dif-
ference between the two sets (e.g., (ending-initial)/initial). Unfortunately, this approach to defining 
fitness leads to a number of  conceptual problems: 

• The tautology problem identified earlier, in which any element of  the ending set must be 
“fit” by definition (McCarthy, 2004, p. 131). 

• Fitness cannot be determined for any set without initial members; this would be particularly 
troubling in applying fitness concepts to areas such as informing and design. To build on our 
earlier example, if  we look at the fitness of  an instructional intervention in terms of  the rela-
tive presence or absence of  the understanding of  a concept before and after an intervention, 
the ratio is undetermined if  none of  the before set already understands the concept. 
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• Once fitness is defined as a ratio, the ratio itself  is not fitness but in fact a comparison of  
relative achievement of  fitness and it does not make sense to ask what fitness depends up-
on—since we already know. 

In spite of  these problems, we find that the simplicity of  this measure nevertheless makes it attractive 
in the vast majority of  plausible cases. Rather than calling the ratio fitness, however, we will refer to it 
as realized fitness. To address the zero initial count problem, there are a number of  approaches we 
might take. In the context of  informing, as suggested by the earlier example, one approach would be 
to take the ratio of  those entities not in the set of  interest (e.g., who do not understand the concept 
in the prior example) at the end and divide it by those not in the set at the beginning. Inverting this 
ratio would offer a measure somewhat comparable to realized fitness. Where this type of  inverse der-
ivation also fails (e.g., the ending set has no members), we might assign some arbitrary value, such as 
the number of  members in the final set, in order to calculate realized fitness. 

Having defined a variable that we can actually measure, we can then define fitness itself  as the expected 
value of  realized fitness across all possible scenarios (including interventions and generations), weighted 
by the likelihood of  each scenario occurring. Defined in this manner, we can propose the fitness 
model presented in Figure 1. 

 
Figure 1. Fitness predicts realized fitness across the weighted probabilities  

of  all possible scenarios 

In this model, fitness can be characterized as a function of: 

• a collection of  N attributes (A1,…,AN), determined by an entity’s state,  
• the probabilities for all possible scenarios that could occur once an entity’s state has been se-

lected 

Realized fitness will then depend upon which of  that series of  possible scenarios actually occurs. M 
of  those scenarios (S1, … SM) represent outcomes whose probabilities (p1, … pM) might actually be 
determined or estimated. Other scenarios, however, may occur whose likelihood and impact will defy 
all attempts at prediction or quantification. These states can be referred to as grey swans and black 
swans (after Taleb, 2007): 
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• Grey swans, in this sense, would represent unpredictable events that are a consequence of  
complex interactions within the system of  interest itself. Ending states like the “bursting” of  
financial bubbles, for example, occur from time to time but nevertheless seem to surprise 
everyone when they occur. 

• Black swans, on the other hand, represent unpredictable events whose origins fall outside of  
the system being examined. Taleb uses the colorful example of  a particular casino that, in at-
tempting to assess all possible risks, failed to account for the possibility that a tiger might 
end up chewing up one of  the performers leading to a measurably lower state of  fitness at 
the end and nearly bankrupting the casino. 

Since we have defined fitness as the expected value across all scenarios and have also asserted that 
the probabilities and impact of  the two swans cannot be predicted, it follows that true fitness is un-
knowable. The best that we can hope for is to develop a reasonably accurate estimate of  fitness for 
those scenarios that we can predict and include—perhaps—an allowance for attributes promoting 
adaptability that will facilitate our ability to survive (or exploit) those events that we cannot predict.  

As we have defined fitness, if  we were to keep repeating the same period over and over again, each 
repetition independent of  the last, then our average realized fitness would eventually converge to 
fitness itself. The same might apply if  we have a very large collection of  entities where the likelihood 
of  a particular scenario is independently determined for every entity. We refer to the set of  states that 
determine whether an entity is or is not included in that large collection as a state-set. Such a state-set 
can itself  be treated as a landscape, representing a portion of  the main landscape in which certain 
attributes are restricted to a set of  allowable values. 

Taleb (2007) presents evidence that: 1) unpredictable swan events play a far more important role in 
determining outcomes than is generally recognized, and 2) grey and black swan events often have a 
major impact precisely because they violate the assumption that individual outcomes within and 
across systems are uncorrelated. These characteristics place significant limits on our ability to esti-
mate fitness. Moreover, even if  we could get a perfect estimate of  fitness, realized fitness would often 
depart from that value—sometimes by a great deal. Having survived and thrived for hundreds of  
millions of  years, we can reasonably assume that the true fitness of  dinosaurs was quite high—
probably very close to 1.0 if  we are using the ratio of  ending count to starting count (i.e., stable). 
Assuming that the prevailing scientific wisdom is correct, however, all it took was a single black swan 
event—an asteroid—to all but wipe them out. 

FITNESS PROXIES 
The obvious problem with fitness, as just defined, is that true fitness is unknowable. Moreover, in order 
to model it we would need repeated measures of  realized fitness for different combinations of  the 
attributes that impact fitness. Sometimes, in simple cases, that approach will work well. Tools such as 
multiple linear regression or logistic regression can be used to separate out the impact of  individual 
attributes on a fitness-related dependent variable, producing a compact fitness model. As we shall 
soon see, however, the presence of  high levels of  extrinsic complexity will make building such a 
model nearly impossible. That seems to make true fitness a construct that we can neither observe nor 
predict with any accuracy. Not the best formula for a useful construct. 

The inability to observe or measure fitness directly is particularly problematic when dealing with enti-
ties that have the capacity to change state intentionally, such as human decision makers. In the long 
run, it is essentially tautological to assert that the best choices an entity can make will be those that 
maximize its overall realized fitness. And, where the overall success of  a “species” (entity) across 
generations is concerned, the realized fitness of  its progeny.  

In the context of  human decision-making, evolutionary economists argue that utility, the construct 
that economists use for the internal function that determines our preferences between states, must 
necessarily have evolved towards making choices that enhance our fitness (Galdolfi, Gandolfi & Ba-
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rash, 2002). In other words, the process through which utility determines individual choices must 
have—at least over long periods of  our past—tuned our preferences to making fitness-enhancing 
choices. Individuals and civilizations whose utility functions were not so-tuned would, as a conse-
quence of  their lower fitness, decline as a percentage of  the total population and, eventually, go ex-
tinct. 

Survival of  the fittest, as just described, probably functions pretty efficiently in an environment 
where the set of  states available to entities are relatively limited and slow to effect change. In this 
sense, biological evolution has tended to proceed much more slowly than changes to our systems--
technologies and lifestyles, for example—in the modern age. As a consequence, many of  our choice 
of  states, such as how much to eat when an abundance of  food is placed in front of  us, may still be 
tuned to an environment when most scenarios involved scarcity. For this reason, states based solely 
upon a Darwinian sense of  survival may not serve to optimize fitness in today’s world. 

Given the potential value of  knowing true fitness, it is not surprising that we have found substitutes. 
We refer to any approach or measure that can be substituted for estimating fitness directly as a fitness 
proxy. To be a good fitness proxy, a construct needs only possess three attributes. First, it should be 
relatively easy to acquire (measure) for any potential state-set whose mean fitness we wish to esti-
mate. Second, it should offer an ordinal ranking of  states. Unlike our earlier definitions of  fitness and 
realized fitness, the units or values of  a fitness proxy do not necessarily have to mean anything as 
long as the measure can be used for purposes of  comparison and choice. Finally, there should be 
some basis for expecting it to be related to fitness or realized fitness. 

Fitness proxies abound today. They fall into a variety of  categories, some of  the most important of  
which include: 

• Expert rankings. Published rankings, for example, may help us choose between different au-
tomobiles, universities, hospitals, vacation spots and products on the internet—just to toss 
out a few examples. The underlying basis for accepting these rankings is the belief  that ex-
perts, having studied a particular set of  comparable state-sets (e.g., individuals whose state 
includes ownership of  a particular automobile) in greater detail and with greater knowledge 
(expertise), are likely to produce a more accurate estimate of  fitness. 

• Popularity. The number of  users of  many different artifacts and services is readily available 
today, particularly in the online world. Measures of  relative popularity, such as market share, 
also fit this category. The relationship between popularity and fitness is straightforward; as 
we have defined fitness, long periods of  high fitness will lead to continued high realized fit-
ness and, as a consequence, a meaningful increase in membership of  the set. Conversely, 
poor fitness will be evident from a loss of  popularity. 

• Consensus ratings. Even where raters are not experts, consensus scores—such as the average 
of  reviewer ratings for a restaurant—may be used as a basis for estimating fitness. Like pop-
ularity, where strong preferences are expressed by users of  an artifact or service, we would 
expect the consensus to drive the size of  the set and its fitness over time. 

• Imitation. We may choose to follow the choices of  individuals that we perceive to be at higher 
fitness levels, even when we cannot ascertain their expertise. The underlying assumption here 
is that where similar choices are available to us—for example, in the type of  athletic shoes 
worn, the beer consumed or the politicians favored —by mimicking their choices entities 
expect to increase their own fitness similarly. 

• Composite proxies. We may take several different proxies and combine them according to our 
own situation. For example, in making a choice between items we may look at each item’s 
price as a proxy for its value—even knowing that this is a weak relationship at best—and yet, 
at the same time, also consider what other sources of  potential fitness we would need to for-
go if  we choose the higher priced item. Similarly, it would be rare for a high school student 
to choose a college strictly based upon its published ranking according to news magazines. 
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Other factors indicating fitness, such as location, setting, costs and facilities would likely be 
considered in tandem with the ranking.  

In considering the above list, which is undoubtedly incomplete, we seem to be wandering quite far 
afield from fitness as defined in biological terms, i.e., survival and reproduction. Indeed, if  we were 
limit our study solely to the realized fitness of  different human population groups, we would likely 
conclude (at the present time) that nature abhors economic development, since those portions of  the 
world that are at or near subsistence are generally reproducing at rates far higher than the more afflu-
ent regions.  

We would argue, however, that our reliance of  fitness proxies, when contrasted with pure instinctive 
choice, may actually have the effect of  bringing utility closer to fitness. This is particularly true where 
we look at the applications of  fitness to sets of  artifacts, activities and ideas where adapting agents 
are involved. The basis of  this argument, illustrated in Figure 2, is as follows: 

• Fitness proxies, such as those described above, tend to be based upon cumulative realized 
fitness (e.g., popularity, consensus) or are likely to drive individuals to particular entities in 
the set of  choices (e.g., expert rankings, imitation), thereby increasing the realized fitness of  
those entities. In either case, these proxies tend to encourage the development or continua-
tion of  high realized fitness for those favored entities. 

• Because we incorporate those fitness proxies into our utility function, these proxies impact 
the choices we make. Because we are referring to the choices of  a population as a whole, this 
will inevitably impact the basket of  scenarios that occur during each period. If  we assume—
for convenience’s sake—that our basket contains all possible scenarios that could occur, this 
effect can be assumed to act on the probabilities of  each scenario. 

• Because the fitness function depends not only upon the state the entity selects but also upon 
the probabilities of  different scenarios, the impact of  our utility-driven choices on these 
probabilities means that our utility indirectly impacts fitness.  

It is worth taking a few moments to think about how the occupancy of  a set of  states might impact 
the fitness of  the set. Suppose a specific state-set contains a finite amount of  some needed re-
source—either renewable or non-renewable. If  too many agents are attracted to that state-set as a 
result of  its popularity proxy, or if  agents linger too long on the state-set, the resources may become 
exhausted. That would change the fitness of  that state negatively. On the other hand, if  a state-set is 
subject to a network effect—meaning the more members of  the set, the greater its value per mem-
ber—a change in the opposite direction can occur. For example, if  the set consists of  agents using a 
particular communications system (several examples of  online social networking information systems 
come to mind), the more agents joining that set, the more valuable that system becomes to its mem-
ber entities. The fitness of  each state in the set therefore increases (even if  not all entities participate 
in the system at the same individual level of  fitness).  

As presented in Figure 2, there are a couple of  potential feedback loops. The first is the very slow 
fitness-driven evolutionary process described by economists, in which: 

• Utility drives our choices, with very limited impact on the probabilities of  different post-
choice scenarios. 

• Realized fitness, in the form of  survival, rewards and punishes different utility functions. 
• Over time, natural selection causes surviving utility functions to correspond closely to fit-

ness. Because this process will tend to produce changes very slowly (i.e., over many genera-
tions), in the short run we can refer to fitness in this model as static. It also closely parallels 
fitness as used in evolutionary biology and as it is adapted for the management and strategy 
literatures (e.g., Frenken, 2006; Leventhal, 1997; Porter & Siggelkow, 2008) 
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Figure 2: The potential feedback loops that develop  

when fitness proxies are used to guide choice 

The second feedback loop occurs much more rapidly: 

• Realized fitness influences some of  the fitness proxies we use (FP1…FP3 in the example dia-
gram) 

• These proxies influence utility; we would expect one or more proxies to incorporate some or 
all of  the same attributes that contribute to fitness independent of  popularity (FSP in the dia-
gram), the type of  fitness that we earlier characterized as static fitness. For example, if  we were 
talking about a product and fitness was being assessed in terms of  the set of  units being 
sold, FSP might be reflective of  factors such as relative cost, design, quality and technological 
superiority. 

• Utility determines our decisions, thereby influencing the probabilities of  different scenarios 
• Probability changes influence realized fitness, which influences the popularity-based proxies 

that we use, and so forth… 

Because fitness is defined to be our expected value for realized fitness, it “comes along for the ride” 
in the second process; it is very dynamic. The impact of  static fitness on utility is so slow, however, 
that it does not play a major role in the process. The static fitness of  the first process may be influen-
tial very early in the process—impacting the survival and reproduction of  the original entities to oc-
cupy the state-set. Once the process gets going, however, the fitness proxies we choose are more like-
ly to be the main drivers of  fitness. In effect, the map (proxies) becomes the territory (fitness).  An-
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other potential way to consider this static/dynamic effect is that the two feedback loops actually oc-
cur over different generational timespans making the first impactful only after significant multiples of  
generations that occur in the second feedback loop. 

In fact, general systems theory suggests that the second (dynamic) loop might produce a number of  
dynamic behavior patterns measured by entity occupancy (Gill, 2016a). These include: 

• Negative feedback: The effects of  state-set occupancy upon static fitness are sufficiently 
negative that as soon as capacity is reached, agents will tend to abandon it. The result is that 
occupancy will remain within a narrow band, like the behavior of  temperature governed by a 
thermostat. 

• Periodic cycling: Where negative feedback is present but its impact on realized fitness is sub-
ject to a significant time delay, a system may fall into a regular periodic cycle, where occupan-
cy goes up and then goes down regularly. 

• Chaotic cycling: With come combinations of  parameters, such as those seen in the chaotic 
region of  the logistic function, occupancy might cycle irregularly across a range of  values—a 
process highly sensitive to initial conditions. This type of  function is sometimes used to 
model population levels in predator-prey systems (Devaney, 1989). 

• Positive feedback: Increases in occupancy produce ever growing increases in realized fitness 
that produces a cascade of  agents moving to the state-set. As described earlier, states subject 
to network effects can exhibit these behavior, which can also produce bubbles. 

Economists have identified many examples of  the positive feedback driven by the second (dynamic) 
loop occurring in real life. Perhaps the most well-known was the competition between VHS and 
Betamax for dominance in the video cassette market (Arthur, 1988). For a few years, the two formats 
competed head-to-head. At a certain point, however, VHS started to develop a slight lead in sales. 
Once consumers recognized that this lead existed (i.e., employing market share as a fitness proxy), a 
sudden and dramatic shift to VHS occurred and the Betamax format was abandoned. All this oc-
curred despite Betamax’s generally acknowledged slight technological superiority over the VHS for-
mat (i.e., FSP may well have been slightly higher for Betamax). 

As illustrated by the prior example, our fitness proxies do not necessarily reflect the values that we 
claim to prize most, such as quality or privacy for example. Even worse, the measures that tend to 
make for easy-to-acquire proxies—such as existing popularity—naturally tend to promote feedback 
loops in which popular state-sets become even more popular (i.e., the rich get richer). Nevertheless, 
over and over again evidence suggests that entities use easy to acquire proxies in place of  systematic 
attempts to estimate fitness. And in doing so, we further amplify their effects even as we condemn 
them. We see this in the academic world all the time. As members of  the university community, we 
recognize the innate illogic of  university rankings. Yet a surprising fraction of  our efforts seem to be 
directed towards improving our own institution’s performance according to these dubious metrics—
reinforcing their importance.  In every sense then, realized fitness is directly related to the actual 
choices made and is not determined by theoretical more or less logically or “ideal” choices. To under-
stand why such paradoxical behaviors may be inevitable, we need to understand how complexity im-
pacts the relationship between the attributes that define a state and fitness (both static and dynamic). 

EXTRINSIC COMPLEXITY 
We use the term fitness landscape to describe the mapping of  all possible states to their associated 
fitness. Most commonly, this relationship is presented in a form where a particular scenario is as-
sumed for each state or where the probabilities of  different scenarios are assumed to be constant, in 
which case the fitness function can be expressed as: 

 Fitness = f(A1,…,AN) 
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DEFINING EXTRINSIC COMPLEXITY 
The nature of  the assumed function f  can vary considerably. For our purposes, the extrinsic complexity 
of  a fitness landscape can be expressed in terms of  the minimum amount of  information necessary to model the rela-
tionship between attributes of  all possible states and their associated fitness to a desired degree of  precision. This is 
similar to the concept of  Kolmogorov complexity (Li & Vitany, 1993) as applied in computer sci-
ence. Our rather dense definition may be somewhat clarified through some examples. 

Example 1: Simple additive fitness  
Suppose we have a state space whose individual states can be described with N attributes, A1, …, AN. 
Further suppose that we can define N transformations, x1(A1), …, xN(AN), abbreviated as x1, …, xN, 
that capture the impact of  each attribute on the expected fitness of  each state across the attribute’s 
entire range of  values. The simple additive fitness model could be expressed as: 

Fitness = x1 + x2 + … + xN 

The x1, …, xN, transitions might be of  a very simple nature, such as c1* a1, …, cN*aN (the standard 
linear regression equation model) or might involve a more complex relationship, such as an inverted 
“U” transformation for variables that make their greatest contribution to fitness when balanced be-
tween too little and too much.  

What makes this model “simple” is that regardless of  how many allowable states can be defined, the 
information required to determine fitness depends entirely on the amount information needed to 
describe the N transformations x1, …, xN. In other words: 

Extrinsic complexity ∝ N 

In the linear regression model, for example, that amount of  information would be the theoretical 
minimum number of  bits required to store N+1 real numbers at the desired level of  precision. Fur-
thermore, it will always be possible to maximize expected fitness by maximizing the contribution of  
each attribute independently. Stated another way, in this landscape the value of  fitness is fully deter-
mined by summing the independent main effects for every variable. 

Example 2: Simple multiplicative fitness  
A simple multiplicative model closely parallels the simple linear model., The difference is that ele-
ments are multiplied—producing percentage rather than absolute changes in fitness for each attrib-
ute—rather than being added, i.e.,: 

Fitness = x1 * x2 * … * xN 

In this model, we see the same properties regarding the maximum and the expected number of  
peaks. Also, by taking the logarithm of  the relationship, it transforms to an additive model. In the 
logarithmic model, 0 (the logarithm of  1 for all bases) becomes the steady state case, positive values 
indicate increases in counts, while negative values indicate declines in counts. 

Example 3: Maximum extrinsic complexity  
Suppose we have a state space whose individual states can be described with N attributes, A1, …, AN.  
Further suppose that there are M possible states, defined by all the legal possible combinations of  
values for A1, …, AN and that no discernable pattern exists for assigning fitness to each combination. 
Then the extrinsic complexity of  the expected fitness function will be proportional to the number of  
possible states M. Assuming each attribute can take on J possible values, this simplifies to: 

Extrinsic complexity ∝ M = JN 

This number can become very large. For example, if  each attribute can take on just two values (J=2) 
and there are 20 attributes (N=20), then M is over a million (220). This compares with determining 
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just 20 coefficients (plus a constant) if  expected fitness follows the simple linear model. Of  particular 
importance, the effect of  changing a particular attribute Ai cannot be determined without knowing 
the values of  all remaining N-1 attributes. Stated another way, in this landscape, fitness is entirely de-
termined by interactions between attributes; combinations—not individual values—are the only thing 
that are important. 

FITNESS LANDSCAPES AND PEAKS 
In visualizing the fitness functional relationship, the notion of  a fitness landscape is often invoked. 
On that landscape, each state has its own fitness value—corresponding to its altitude. Multiple enti-
ties may exist in any given state. That state is surrounded by states that are adjacent. Adjacency in this 
context occurs when an entity in an “adjacent” state can transition to the state with a single affected 
action or procedure. In cases where the fitness of  a particular state is higher than that of  all adjacent 
states, we have a peak. That peak is always a local maximum. It may also be the global maximum 
across the entire fitness landscape. 

Peaks play a particularly important role in determining the expected behavior of  entities on a fitness 
landscape. Nearly any model of  presumed behavior on a fitness landscape is based on the assump-
tion that entities on that landscape continue to transition from state to state in the search for higher 
fitness. Once an entity reaches a peak, however, none of  the adjacent transitions available will lead to 
increased fitness. Therefore many models assume that the entity will cease searching at that point. 
The drawback of  this type of  search is that where a landscape has many local peaks, the entity may 
get stuck occupying a state whose fitness is lower than can be found in other regions of  the land-
scape and never pursue a global maximum state. 

Peaks and extrinsic complexity 
We have defined extrinsic complexity in terms of  the amount of  information required to describe 
the relationship between state attributes and fitness. We could have almost as easily defined it in 
terms of  the number of  local peaks expected to occur on that landscape. We can illustrate this rela-
tionship by comparing the previous examples of  simple and maximally complex relationships be-
tween attributes and fitness.  

Low extrinsic complexity single peak 
Referring back to Example 1, the simple additive model, fitness was determined by the sum of  N 
attributes, transformed, if  necessary, by functions x1,…,xN to capture their individual and independ-
ent impacts on fitness, i.e., 

Fitness = x1 + x2 + … + xN 

This relationship will have one and only one peak provided that two other assumptions also hold 
true: 

1. Each function xi does not produce multiple local peaks across its range. In mathematical 
terms, the transformation xi is monotonic over the entire domain of  Ai or has a single peak 
over that domain. 

2. Each state attribute value Ai can be set independently of  other state values. 

That peak will occur where every attribute value Ai is chosen so that it maximizes the value of  xi(Ai). 
For example, if  the transformation consists of  a simple regression coefficient, i.e., xi(Ai) ≡ ci*Ai, then 
xi will be maximized for the highest value of  Ai across its range if  ci is positive, and the smallest value 
of  Ai across its range if  ci is negative. Search is greatly simplified by the fact that the value for each Ai 
can be selected without concern about interactions with the other attributes.  

The second assumption, being able to set attributes independently, is needed to avoid situations 
where a particular value of  Ai cannot be reached unless certain other attributes, such as Aj and Ak, 
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have specific values. For example, if  Ai represents a career choice and its peak fitness value is for a 
cardiac surgeon, that state value may not be reachable without Aj (e.g., graduate degree) being set to 
medical degree and Ak (e.g., residency specialty) having been set to cardiac surgery. This opens the 
possibility of  other local peaks being available to individuals not having the necessary prerequisites. 

High extrinsic complexity peaks 
At the other extreme, the maximally complex Example 3, no simple formula can be devised to cap-
ture the functional relationship between attributes and fitness. In fact it is the large amount of  in-
formation needed to capture that relationship that defines extrinsic complexity. It may be possible, 
however, to estimate the number of  peaks on such a landscape if  some additional information is ac-
quired. We begin by noting that we assume that there is no pattern to the relationship between states 
and, therefore, expected fitness occurs where all states have an equal possibility of  being local peaks. 
So, if  we choose an arbitrary state, its likelihood of  being a peak is the same as the likelihood that it is 
the largest value in the set consisting of  itself  and however many adjacent states are present. If  we 
assume that the average number of  adjacent states is A, we can express that likelihood as: 

1 / (A + 1) 

Earlier, we assumed M possible states. Since the same likelihood applies to all M states, the expected 
number of  peaks becomes: 

 M / (A + 1) 

This number can get very large under conditions of  high extrinsic complexity, since M tends to grow 
combinatorically with the number of  attributes. In the previous Example 3, we considered a scenario 
where each attribute could take on two values and state was defined by 20 attributes. If  we continue 
making the assumption that each state attribute can be set independently, then a particular state has 
20 adjacent states. The formula for the number of  local peaks then becomes: 

(220)/(20+1) ≈ 50,000 

This example segues nicely into one of  the most commonly used approaches to simulating fitness 
landscapes. 

Kauffman’s NK landscapes 
There is no “right” way to construct simulated landscapes that capture extrinsic complexity. Com-
mon to model building activities in general, there will typically be a tradeoff  between the simplicity 
of  the model and the number of  aspects we wish to incorporate into that model. Increasing the 
number of  aspects being modeled invariably increases the number of  parameters that the modeler 
must estimate (or, more often, guess) values for. Eventually, a model is produced that is so flexible 
that it can support any conclusion that the modeler cares to draw. 

In modeling the impact of  extrinsic complexity on agent behavior, a particularly widely used model is 
Kauffman’s (1993) NK landscape. Its principle virtue is its remarkable simplicity—requiring only two 
parameters: 

1. N: The number of  attributes impacting fitness 
2. K: The number of  interacting variables determining how a particular attribute impacts fit-

ness, ranging from 0 (each variable effects fitness only through its main effect; this corre-
sponds to the earlier Example 1 Simple additive relationship) to N-1 (the impact of  a partic-
ular attribute on fitness can be determined only by knowing the value of  every other attrib-
ute; this corresponds to Example 3 Maximally complex relationship). 

How the basic NK model can be implemented is described in many places (e.g., Gill, 2012, p. 80-83). 
For our purposes here, it is sufficient to note that: 
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• All attribute values are binary (0 or 1), which eliminates any concern about multiple local 
peaks within a particular variable’s range. 

• Adjacent states are assumed to be those states whose pattern differs by only 1 attribute value. 
Thus, any particular position on the landscape always has N adjacent states. This is equiva-
lent to saying that a decision-making entity always has N possible choices to consider, no 
matter where it exists on the landscape. 

• Fitness is defined as an ordinal value that does not directly correspond to survival or repro-
duction levels as the model is typically implemented. As such, the “fitness” value assigned to 
each state would be better characterized as a fitness proxy, using our terminology. 

• No feedback between realized fitness and actual fitness is implemented; fitness values set by 
the model generally remain constant throughout a particular simulation run. 

As a consequence of  these assumptions, the NK model is most commonly employed to look at how 
changing extrinsic complexity influences an entity’s search for fitness. Specifically, as the K parameter 
varies from 0 to its maximum value of  N-1, extrinsic complexity—as we have defined it—rises ac-
cordingly. Implications of  that rise are summarized in Table 1. 

EXTRINSIC COMPLEXITY AND DYNAMIC FITNESS 
A significant drawback of  NK landscapes and other attempts to simulate landscape complexity is 
their static nature. Given our proposed definition of  fitness (i.e., the expected value of  realized fit-
ness) this is a serious deficiency. If  we are looking at entities, the realized fitness of  a state for a par-
ticular entity will largely be determined by the degree to which that state attracts new entities. Since 
fitness proxies based on the popularity of  a state are common, a static model fails to account for the 
impact of  realized fitness-based proxies feeding back to influence fitness itself, such as those illus-
trated earlier in Figure 2. For decision-making entities, this would suggest the model might need an 
occupancy-based fitness proxy to supplement the static attribute-based fitness proxy already assumed 
by the NK model. 

Table 1: Key findings from Kauffman (1993) regarding structure of  NK landscapes  
as K increases 

Finding Description (page) Interpretation 

I The number of  local peaks increases (p. 
60) 

The likelihood of  encountering a low peak 
and, potentially, becoming trapped on it, 
grows. At the same time, high extrinsic com-
plexity increases the likelihood that a high fit-
ness peak exists within a given distance of  an 
arbitrary position on the landscape. 

II The mean fitness of  peaks declines (p. 
56) 

III The mean distance for a random entity 
to the nearest peak declines (p. 57) 

IV Local peaks become more uniformly 
distributed across the landscape (p. 62) 

Combinations that produce high fitness will 
become increasingly diverse in nature. 

V States adjacent to a particular state be-
come less correlated (p. 63)  

As the average difference in fitness between 
adjacent states grows, the likelihood of  experi-
encing large fitness increases or declines over 
the course of  a search for higher fitness grows. 

VI Correlation falls off  rapidly as the dis-
tance between states increases. 

An agent observing other entities is increasing-
ly likely to gain useful insights into fitness only 
from its closest neighbors. 

 

The potential value of  having entities observe other entities in their search for higher fitness was 
demonstrated in research (Gill, 2012, p. 61) that looked at how landscape ruggedness impacted ten-
dency towards homophily, which is the tendency of  entities to seek out and establish groups of  self-
similar entities. In simulations of  100 entities searching an NK landscape of  substantial complexity, a 



Gill & Mullarkey 

51 

number of  alternative search strategies for simulated agents were compared. The most effective 
strategy, by far, was a goal-seeking approach where agents acquired and retained information by ob-
serving nearby agents. Among its benefits: 

• Higher average static fitness at the end of  the run (when all agents has reached peaks) 
• Fewer average steps to reach a final peak 
• Higher cumulative static fitness over the course of  the search process 

The group employing this search strategy also ended up occupying a much smaller percentage of  
peaks than agents employing other search strategies, such as random walks. This result provided sup-
port for the conclusion that high extrinsic complexity tends to encourage homophily. Where such a 
behavior is present, however, we would necessarily expect that popularity play a major role in deter-
mining occupancy. 

Incorporating dynamic fitness changes into the NK simulation model is beyond the scope of  this 
paper. In our opinion, doing so would be unlikely to yield compelling results in any event. The prob-
lem is that modeling the feedback loop described in Figure 2 would require adding numerous as-
sumptions regarding the relative importance of  different types of  proxies, how the utility function of  
agents on the landscape would be constructed, how to generate realistic scenarios and estimate their 
probabilities, how to determine generation duration, and so forth. In doing so, the key benefit of  the 
NK landscape model—its simplicity—would be undermined. 

What we can do, however, is to look at the effects presented earlier in Table 1 and offer reasoned 
arguments as to how such feedback is likely to influence them. In Table 2, our conclusions and ra-
tionale regarding the likely influence of  popularity-driven fitness proxies on Table 1 behaviors are 
summarized.  

Table 2 phenomena IX and X together will tend to produce the familiar punctuated equilibrium (Bak, 
1996) that is observed in many complex adaptive systems. Peaks gaining in occupancy will tend to be 
sticky as a consequence of  their popularity-driven proxies. Also, the risk of  moving off  a peak rises 
with extrinsic complexity (a result of  V in Table 1). These factors will make the system as a whole 
seem very stable. But, as a peak’s occupancy reaches a high percentage of  available agents, its ability 
to maintain high rates of  growth declines. At that point, there is an opening for a new high fitness 
state to gain in popularity, producing a rapid increase in realized fitness. That gain may be attractive 
enough to pull some agents from the original peak. Their departure will, in turn, generate a drop in 
the realized fitness and corresponding proxies for the original state. This could set up a positive 
feedback loop that precipitates further departures and further drops, producing a very rapid transi-
tion of  many agents to the new state. The rapidity of  this phenomenon, for example, is a central el-
ement of  the behavior pattern described in the “innovator’s dilemma” (Christensen, 1997). In Chris-
tensen’s well-known model, the formerly loyal and enthusiastic customers of  an existing supplier ab-
ruptly change to a new supplier once a disruptive technology’s price-capabilities set achieves a partic-
ular threshold. Examples of  the phenomenon described by Christensen included the U.S. steel indus-
try, the computer storage industry, and the minicomputer industry.  

Phenomena such as the one described can be characterized as information cascades (Gill, 2010). 
They occur when rapid transitions from one state to another occur as a consequence of  agents ob-
serving the behavior of  other agents. The cumulative graph of  the transition frequently follows the 
familiar S-curve of  the diffusion of  innovations (Rogers, 2003). In many of  the models for this type 
of  process, a diversity of  agent behaviors exist (Gill, 2008). An innovator agent, for example, is pre-
sumed to be far less attached to any given peak than the typical agent. Early adopters carefully moni-
tor the successes and failures of  innovators, regular adopters keep an eye on the experiences of  regu-
lar adopters, and so forth. When looking at the aggregate behaviors across state-sets, rather than for 
individual states, evolutionary theory provides a basis for expecting heterogeneity to be present. The 
concept of  an evolutionary stable strategy (ESS; Maynard Smith & Price, 1973), derived from game theo-
ry, shows how a mix of  different strategies within a population can achieve equilibrium.  
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Table 2: How popularity driven fitness proxies are expected to  
influence static fitness NK landscape behaviors 

Finding 

Effect contrasted with expected 
behaviors on a static landscape 
of  comparable extrinsic com-
plexity 

Rationale 

VII 
The number of  observed fitness 
peaks that are occupied will be 
lower. 

Agents will be drawn to peaks with high occupancy, 
and will spend less time exploring for new peaks.  

VIII 

Peak occupancy will diverge con-
siderably from normal (Gaussian) 
and will be more likely to resemble 
a power law.  

A similar feedback-driven phenomena has been ob-
served in traffic through internet routines (Barabasi, 
2002; Watts, 2003). Indeed, power laws are com-
monly observed wherever “rich-get-richer” forces 
exist (Gill, 2010). 

IX 
Peaks with increasing occupancy 
will become very attractive to 
agents. 

An agent’s willingness to seek out a new peak from 
an existing peak will depend on the perception that 
fitness of  the new peak is higher. Fitness proxies 
that trigger from increasing occupancy will tend to 
make a peak in its ascendency seem very high fit-
ness. 

X 

When a peak begins to be aban-
doned in favor of  another peak, 
the process will occur much faster 
where dynamic fitness processes 
dominate. 

The complement to IX, if  agents begin leaving one 
peak for another, the popularity-based fitness prox-
ies will drive the period-to-period realized fitness of  
the original peak down quickly.  

XI 
Agent reliance on fitness proxies 
will increase with extrinsic com-
plexity. 

As underlying complexity grows, both lack of  suffi-
cient exemplars and cognitive processing limitations 
will require agents to employ simplifying strategies; 
ultimately states that maximize proxies may become 
the new “peaks”.   

XII 

Groups of  agents will seek con-
sensus on a limited number of  
fitness proxies, and will seek to 
incorporate fitness proxies of  self-
similar agents.  

As proxies increasingly come to define peaks on 
high extrinsic complexity landscapes (XII), 
knowledge of  proxies used by agents in nearby 
states will become essential in locating nearby peaks.  

 

INFORMING AS A SEARCH FOR HIGHER FITNESS 
Interestingly, the potential payback for exploratory behaviors is likely to grow under high extrinsic 
complexity (Table 1, I) even as dynamic complexity produces attraction to highly occupied non-
adjacent peaks. We can hypothesize that these two competing forces will tend to increase the ob-
served turbulence on a landscape as its extrinsic complexity grows. 

Within the informing science transdiscipline, the search for higher fitness has been used as a model 
of  the informing process. This process can be viewed from two lenses, the client’s (entity’s) and the 
informer’s. 

THE CLIENT PERSPECTIVE 
When viewed from the client’s perspective, the informing process can be thought of  as a transition 
through fitness states over time, as illustrated in Figure 3. Originally based on a static fitness model, it 
was assumed that a client reaching a local fitness peak would remain at a relatively constant level of  
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fitness (i.e., a plateau), and the process of  acquiring new knowledge would initially lead to a decline in 
fitness—as the original knowledge state was disrupted—that would then transition to a new fitness 
state that would, hopefully, be higher than the original state. Two additional factors make the process 
far from straightforward, however. These factors can be characterized as three different aspects of  
the complexity of  the informing task (Gill, 2016a): 

1. Experienced complexity: There may be considerable uncertainty regarding the relative fitness of  
the original and target states, as suggested by the cloud in the diagram. The client may also 
be concerned about the perceived difficulty of  the transition. Both describe psychological 
states in the mind of  the client, commonly referred to as experienced complexity (Campbell, 
1988). 

2. Intrinsic complexity: The transitions that must be undertaken to move between the two states 
may be complicated. This is a direct result of  the particular approach that the client adopts, 
or expects to adopt, to make the transition. It has been referred to under a variety of  names, 
including objective complexity (Wood, 1986), problem space complexity (Gill & Hicks, 2006) 
and simply as task complexity (Haerem, Pentland & Miller, 2015). For our purposes, we 
adopt the term intrinsic complexity to distinguish those aspects of  the task that are per-
former-specific vs. those that are driven by the environment. 

3. Extrinsic complexity: As already defined, the term characterizes the underlying shape of  the re-
lationships between state attributes and survivability. 

 
Figure 3: Fitness from the client perspective, presented as changes in fitness over time  

(from Gill, 2016a, p.151) 

For the purposes of  the present paper, we concentrate on the last of  these. We would, however, to 
expect any informing process to be influenced by all three forms of  complexity and the interactions 
between them. For example, high extrinsic complexity could increase the client uncertainty with re-
spect to the fitness of  a particular state (experienced complexity) and the expected ruggedness of  the 
landscape could impact the client’s approach to reaching the target (intrinsic complexity). 
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Incorporating extrinsic complexity and dynamic fitness 
An increase in extrinsic complexity is likely to have three impacts on the Figure 3 model. First, it will 
make it harder for the client to assess the fitness of  an individual state. Second, it will—under most 
circumstances—make the cost of  traversing the fitness valley between to peaks harder to estimate. 
Finally, it will be harder to determine the potential fitness increase that can be acquired by transition-
ing between states. In this landscape, movement between typically non-adjacent peaks requires more 
than one affected action or process when seeking a higher state of  fitness.  The anticipated effects 
from Table 1 and Table 2 can be used to make qualitative predictions with respect to how this might 
change the client’s informing process. Among the most likely impacts: 

• Clients will tend to migrate towards a relatively small number of  highly occupied and com-
peting knowledge states (Table 2, VII). As an example, consider scientific paradigms. In 
those domains where a “right” answer is presumed to exist and can be tested—e.g., many of  
the physical sciences—a single dominant paradigm will most likely flourish, a consequence 
of  the low extrinsic complexity of  such domains. A dominant paradigm will only be dis-
placed by a more successful dominant paradigm; effectively, this is the process described in 
Kuhn’s (1970) scientific revolution. In those domains where the adequacy of  knowledge is 
much harder to assess and where interaction effects dominate—i.e., high extrinsic complexi-
ty domains—we would expect many local fitness peaks (Table 1, I-III). In a static fitness 
model, we would expect many of  these to be occupied over time. In the dynamic fitness 
model, however, a relatively small number of  these will emerge as coexisting paradigms that 
vigorously compete for adherents, occupied by the vast majority of  clients (Table 2, VIII). A 
paradigm that does not continually gain adherents will eventually be viewed as passé, and ad-
herents may abruptly transition to other perspectives (Table 2, X). 

• Clients will increasingly rely on fitness proxies to estimate the fitness of  knowledge states 
(Table 2, XI). Popularity and, especially, popularity growth (e.g., “buzz”), will be particularly 
influential in determining what knowledge states clients choose to occupy (Table 2, IX). Easy 
to acquire proxies that capture popularity (e.g., view counts, best seller lists) and peer rank-
ings will become increasingly influential in decisions to seek a particular knowledge state.  

• Clients will seek opportunities to interact and align themselves with self-similar individuals in 
order to acquire locally relevant information about potential knowledge state targets (Table 
1, V-VI); general expertise, in turn, will become suspect. The clusters formed through this 
process will tend to adopt similar fitness proxies (Table 2, XII). We would, for example, ex-
pect that such a process would naturally lead to the development of  knowledge silos and the 
formation of  groups that hold wildly dissimilar views with respect to how the world operates 
(Table 1, IV). 

In the broadest sense, under very high levels of  extrinsic complexity we would expect that the peer-
based effects described in Table 2 will come to both dominate and amplify the static complexity ef-
fects of  Table 1. In many ways, this could be characterized as a trade-off  between different types of  
informing task complexity. The higher the extrinsic complexity, the greater the reliance on a “simple” 
approach (imitation) to choosing and moving between states.   

An example: Use of  social media to become informed 
Extrinsic complexity, particularly as it relates to Table 2 effects, might provide an explanation for 
changing patterns for how individuals become informed. Just as an example, consider the question 
of  why social media grows in importance as a source of  political informing for each succeeding gen-
eration, as illustrated by a Pew Research study shown in Figure 4. The logic here is as follows: 

• A number of  forces, most notably globalization and technology development, tend to in-
crease the extrinsic complexity of  the environment (Gill, 2010), providing individuals with 
many more possible states to which they could transition. 
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• This impact is likely to be most significant for individuals less habituated to a particular fit-
ness state, i.e., earlier in their career. 

• For such individuals, opportunities to acquire knowledge from self-similar peers will be par-
ticularly valuable when contrasted with information from general experts. Hence, these net-
works have become the dominant information source for both Generation X (51%) and the 
Millennials (61%; Mitchell, Gottfried & Matsa, 2015, p. 11). 

• Such opportunities, however, will also be valuable to individuals in older generations (e.g., 
the 39% of  baby boomers that gather political information from Facebook); it is just that 
the relative value will be slightly less. Indeed, because they are more habituated to a particular 
fitness state, they will be more likely to seek out content that supports their existing 
knowledge state. For example, boomers are much more likely to see posts largely in line with 
their own views (31% of  the time; Mitchell, Gottfried & Matsa, 2015, p. 11) than Generation 
X (21% of  the time) and the Millennials (18% of  the time). Nevertheless, the percentage of  
each group that rarely sees posts in line with their own views is nearly identical (12% for 
boomers; 12% for Generation X; 14% for Millennials), suggesting that this is not purely a 
generational difference in desire to avoid cognitive dissonance. 

 
Figure 4: The role of  social media in sourcing political news by generation  

(Mitchell, Gottfried & Matsa, 2015; p. 8) 
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THE INFORMER PERSPECTIVE 
The informing task from the perspective of  the informer has also been examined through the lens 
of  fitness. In this scenario, the informer must address the fitness question from two dimensions: 

1. The possible initial states from which the client or collection of  clients starts. 
2. The possible target states that could be the consequence of  the informing process. 

Supposing each initial and target state represents a real or perceived fitness peak, the informing pro-
cess might be viewed conceptually as shown in Figure 5. The X axis signifies the number of  initial 
client states (either for multiple clients and/or situations where an individual’s initial state is un-
known). The Y axis signifies the number of  possible target states that would constitute successful 
informing. Where that number is 1, we may presume that only one “right answer” as an informing 
outcome. Where multiple target states exist, multiple states—possibly quite different in nature—
could be considered outcomes for a successful informing process. The latter situation would be typi-
cal where the informing occurs in high extrinsic complexity environments. 

 
Figure 5: Possible scenarios in the informing task from the informer perspective  

(Murphy, Murphy, Buettner, & Gill, 2015, p. 69) 

Regardless of  whether or not dynamic fitness processes are considered, Figure 5 highlights a key in-
forming challenge: the number of  paths between initial state and target that the informer must con-
sider in presenting content. Assume, for example, that M starting states and N target states are pre-
sent. In the case where M is 1 (i.e., no client diversity), only 1 (bottom left quadrant) or N (top left 
quadrant) possible paths must be considered. Similarly, where N is 1 (a right answer exists) only 1 
(bottom left quadrant) or M (bottom right quadrant) paths must be charted. The really troublesome 
case is where M>1 and N>1 (top left quadrant), in which case M x N paths are possible. In this case, 
the conclusion reached was as follows: 

Of  necessity, the clients themselves will need to be heavily engaged in mapping out their 
own learning paths, any formally designed system that efficiently moves clients along a sen-
sible path would quickly become too complicated to sustain itself  (Gill, 2016b, p. 91). 
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Unfortunately, in high extrinsic complexity environments, we can expect this challenging quadrant to 
be encountered with ever-greater frequency, since both clients and target peaks will tend to spread 
out across a landscape (Table 1, IV) of  increasing extrinsic complexity.  

Incorporating extrinsic complexity and dynamic fitness 
An increase in extrinsic complexity is likely to impact three of  the four quadrants of  the Figure 5 
model. When compared with a pure static fitness model having the same number of  peaks, we would 
expect the inclusion of  dynamic fitness to produce greater clustering around peaks (Table 2, VII). 
This would have two impacts: 

1. Reducing the number of  distinct client types 
2. Increasing the tendency of  clients to choose between a limited subset of  possible target 

peaks 

Both effects would seem to suggest that the process of  identifying appropriate informing paths for 
clients should become less complicated in a dynamic model as opposed to a pure static model. The 
caveat here is that the assumption of  high extrinsic complexity means that we are already presenting 
ourselves with so many paths as to challenge our cognitive limits and clients are pressed to take mul-
tiple actions to move to potentially higher peaks. 

Incorporating dynamic complexity would likely transform the group dynamics of  the informing pro-
cess. In the pure static complexity model, individuals might look at their peers for cues, leading so 
some homophily (e.g., Gill, 2012). In the dynamic complexity model, this phenomenon would be 
amplified. Individuals might well choose to replicate behaviors and proxies adopted by individuals 
perceived to be similar to themselves, leading to clusters of  participants who follow very similar 
paths towards the same target (Table 2, XII). In such an environment, the informer’s strategy would 
necessarily need to adapt in order to be effective. For example, interventions that are directed to-
wards a single individual would likely prove ineffective. Not only would the informer have to address 
the challenge of  motivating the client to initiate the transition (i.e., Figure 3), he or she would also 
need address the strong tendency to revert to the group norms of  the individual’s associated cluster. 

For large client groups, the presence of  high extrinsic complexity might also produce greater volatili-
ty in actual informing outcomes than would otherwise be predicted. Suppose, for example, you were 
the instructor in a series of  course sections that each had 100 students. Where each of  the students 
attending the class chose their own target and path independently, you would expect that the varia-
tion in informing outcomes from section to section would not be terribly great—much as you would 
expect the number of  heads and tails to be reasonably similar if  you flipped a fair coin 100 times. If, 
however, the same 100 students self-organized into a small number of  groups, each of  which estab-
lished its own patterns of  behavior and fitness proxies, we would expect the variability between sec-
tions to be much greater, even as the variability between participants within a section might decline 
by virtue of  group formation. Even where only static fitness is modeled, homophily can emerge and 
the replicability of  successive trials tends to be low (Gill, 2012). Adding the tendency to self-organize 
predicted by the dynamic fitness model will lead to even greater variability. 

CONCLUSIONS 
In the present paper we have argued that our understanding of  informing processes can be advanced 
by a clearer understanding of  what is meant by fitness and environmental complexity. In doing so, we 
have chosen to present possible definitions for two key concepts: 

1. Fitness: the expected value of  the growth or shrinkage in the membership a set of  entities 
over s specified interval. 

2. Extrinsic complexity: the amount of  information required to capture the relationship between 
the attributes that define a particular entity’s state and that state’s associated fitness. 
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What we have subsequently argued is that understanding extrinsic complexity has profound implica-
tions for informing. Specifically: 

• Because extrinsic complexity is driven principally by the level of  interaction between attrib-
utes in determining fitness, high extrinsic complexity implies a landscape with many local fit-
ness peaks. 

• Many local fitness peaks, in turn, produces a number of  interesting implications. These in-
clude: 

o The potential risk of  encountering very sharp fitness changes (either drop-offs or 
increases) when exploring the landscape rises; where clients are risk averse, this may 
increase their tendency to cling to an existing peak (i.e., retain their current 
knowledge state). 

o The likelihood of  deriving useful information from observing the realized fitness of  
neighboring agents drops off  dramatically as their attributes begin differ from those 
of  the observer; informing benefits will therefore arise from grouping with self-
similar agents (i.e., homophily), the consequences of  whose behaviors are likely to 
be far more representative of  what the agent itself  will experience. 

o The likelihood of  becoming stuck on a relatively low local fitness peak increases; in 
the informing context, this suggests increased likelihood of  becoming trapped in 
knowledge states that are far less valid than other states. 

o The diversity of  potential knowledge states that lead to high fitness will increase; a 
particular local peak may be governed by rules that seem entirely different from 
those of  a distant (non-adjacent) peak; knowledge therefore becomes increasingly 
localized. 

• With high extrinsic complexity, it becomes increasingly unlikely that generalizable principles 
for achieving fitness will be available owing to the amount of  information required. That 
implies: 

o An agent will become increasingly dependent upon proxies in its search for fitness; a 
proxy is any individual or composite value that is perceived likely to reflect underly-
ing fitness (e.g., rankings, popularity scores). 

o Venues that offer insights into popularity-based fitness proxies—particularly where 
similar agents can find each other—will be prized as a source of  information; social 
networks and online shopping venues are two obvious examples of  these. 

o Where a popularity-based proxy is widely accepted, a feedback loop is established 
whereby fitness itself  is impacted by the population shifts motivated by the proxy. 
Depending upon the context, different impacts may be observed. These include 
negative feedback (e.g., the old joke, “that restaurant has really gone downhill, it has 
become way too crowded”), positive feedback (e.g., the network effect for social 
media applications), or some type of  cycling (e.g., the logistic function sometimes 
used to model population dynamics). 

o The twin forces of  increased attachment to a particular local peak and the increased 
reliance on fitness proxies make it likely that high extrinsic complexity will be ac-
companied by both environmental turbulence brought about by changing fitness 
and information cascades, where formerly stable trends change very quickly. 

From the informer’s perspective, when dealing with groups of  clients that are not part of  a homo-
philic small world, there is a very strong likelihood that the group will: 

• Start from a very diverse set of  initial states. 
• Will be seeking a very diverse set of  target states over the course of  the informing process. 

To accommodate this diversity, we believe that client-centric approaches to informing that facilitate 
individual path discovery will increasingly need to be devised and employed. Future research that ex-
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plores and proposes such techniques seems to be a particularly good fit for the informing science 
transdiscipline. As the current paper suggests, the very nature of  extrinsic complexity makes it re-
sistant to silos. Only a research philosophy that encourages crossing disciplinary boundaries seems to 
offer the prospect of  advancing our understanding of  such informing contexts. 
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