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ABSTRACT  
Aim/Purpose In this paper we propose a framework identifying many of the unintended 

consequences of information technology and posit that the increased com-
plexity brought about by IT is a proximate cause for these negative effects.  

Background Builds upon the three-world model that has been evolving within the inform-
ing science transdiscipline. 

Methodology We separate complexity into three categories: experienced complexity, intrin-
sic complexity, and extrinsic complexity. 

With the complexity cycle in mind, we consider how increasing complexity of 
all three forms can lead to unintended consequences at the individual, task 
and system levels. Examples of these consequences are discussed at the indi-
vidual level (e.g., deskilling, barriers to advancement), the task level (e.g., per-
petuation of past practices), as well as broader consequences that may result 
from the need to function in an environment that is more extrinsically com-
plex (e.g., erosion of predictable causality, shortened time horizons, inequal-
ity, tribalism). 

We conclude by reflecting on the implications of attempting to manage or 
limit increases of complexity. 

Contribution Shows how many unintended consequences of IT could be attributed to 
growing complexity. 

Findings We find that these three forms of complexity feed into one another resulting 
in a positive feedback loop that we term the Complexity Cycle. As examples, 
we analyze ChatGPT, blockchain and quantum computing, through the lens 
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of the complexity cycle, speculating how experienced complexity can lead to 
greater intrinsic complexity in task performance through the incorporation of 
IT which, in turn, increases the extrinsic complexity of the economic/tech-
nological environment. 

Recommendations  
for Practitioners 

Consider treating increasing task complexity as an externality that should be 
considered as new systems are developed and deployed. 

Recommendations  
for Researchers  

Provides opportunities for empirical investigation of the proposed model. 

Impact on Society Systemic risks of complexity are proposed along with some proposals regard-
ing how they might be addressed. 

Future Research Empirical investigation of the proposed model and the degree to which cog-
nitive changes created by the proposed complexity cycle are necessarily prob-
lematic. 

Keywords complexity, task complexity, information technology, homophily, punctuated 
equilibrium, systemic risks, information overload, fitness, rugged landscape, 
unintended consequences 

INTRODUCTION 
Where would we be without information technology? IT has become exponentially more powerful 
and elaborate over the last fifty years, yielding countless benefits, and allowing us to attain a level of 
efficiency vis-à-vis space, time, and effort hitherto inconceivable. IT has also provided us with more 
options and forms of recreation and socializing. It has given society the ability to better respond to 
events—the ability to work and learn from home during the COVID-19 pandemic being a recent ex-
ample. 

Despite its myriad benefits, there has also been increasing recognition of many possible unintended 
consequences of the ubiquitous presence and use of IT. For example, using machine learning algo-
rithms, AI can detect the characteristics associated with successful hires far more efficiently than a 
human ever could. Unfortunately, these algorithms can be equally efficient in replicating the preju-
dices and unconscious biases of past human performers (O’Neil, 2016). 

Numerous other examples of unanticipated negative consequences of IT exist, across a wide spec-
trum of effects. The list includes job deskilling (Braverman, 1998; Faik et al., 2020), loss of privacy 
(Clarke, 2016; Meingast et al., 2006), anxiety/unhappiness (Bawden & Robinson, 2009; Salo et al., 
2022), vulnerability (Nawir et al., 2016), dependency (Shu et al., 2011), inactivity/obesity (Fothering-
ham et al., 2000), loss of competency (Braverman, 1998), and both inequality (e.g., the digital divide; 
Aanestad et al., 2021; Autor et al., 1998), and perceived inequality (Turel, 2021).  

The sheer diversity of these examples raises this question: are the negative effects of IT largely inde-
pendent or are they related? In this paper, we propose a conceptual scheme called the “complexity 
cycle,” arguing that many of these effects have a common thread. The scheme, based on three dis-
tinct forms of task complexity, argues that the introduction of IT frequently leads to changes at the 
local (individual task) level that contribute to changing broader system levels (e.g., the economic envi-
ronment) that eventually feed back to the local level and motivate further changes. 

We begin by presenting a broad definition of what constitutes a task. We then describe three forms 
of task complexity – experienced complexity, intrinsic complexity, and extrinsic complexity – draw-
ing from both complexity theory and IS research pertaining to complexity. We next consider how the 
three forms of complexity interact with each other. The result is a hypothetical positive feedback 
loop that we refer to as the complexity cycle.  



Gill & Gill 

3 

Using the complexity cycle as our conceptual framework, we then consider some examples of how 
different information technologies might act upon the cycle. The specific technologies we consider 
are ChatGPT (standing in for generative AI as a whole), blockchain, and quantum computing. We 
argue that the first two can impact the cycle incrementally, whereas the last of these could lead to a 
discontinuous change in the economic/technology environment though its potential impact on pri-
vacy and security. 

Based on the predicted behavior of the cycle, we then consider a variety of unintended consequences 
that could result from the ongoing changes produced by the proposed complexity cycle. Potential 
consequences are proposed at the individual level (e.g., deskilling, barriers to advancement), the task 
level (e.g., perpetuation of past practices), the broad system level (e.g., erosion of predictable causal-
ity, shortened time horizons, inequality, tribalism). We then discuss how this proposed conceptual 
scheme might allow us to better anticipate and manage the challenges of task changes accompanying 
the introduction of IT and the potential implications for informing science. 

REVIEW OF RESEARCH 
In this section, we review relevant elements of task complexity theory that are the foundation of the 
ideas presented in this paper.  

We conclude the section by considering research that specifically deals with task complexity’s rela-
tionship to information systems. 

TASK COMPLEXITY THEORY 
Before beginning this review, we acknowledge that many meanings have been proposed for the “task 
complexity” construct (Hærem et al., 2015), and the more general concept of “complexity” has been 
applied to individual thinking in many ways, including “complex thinking”, “complexity thinking” 
and “complex systems thinking” (Teixeira de Melo et al., 2020, p. 167). For our purposes, however, 
we will employ a lens that considers task complexity in three ways: as it is experienced by an individ-
ual task performer (experienced complexity), as it describes the requirements and activities of the task 
in symbolic terms (intrinsic complexity), and as it characterizes the structure and behavior of the en-
vironment in which the task is performed (extrinsic complexity). 

What is a task? 
To understand task complexity, we must have a working definition of what constitutes a task. For the 
purposes of this paper, we define a task as having three elements: 1) a set of allowable starting points, 
2) a set of acceptable ending points, and 3) a set of rules that specify or limit how the performer can 
transition from start to finish. This definition, adapted from research related to the informing task 
(Gill & Mullarkey, 2017), allows most intentional activities to be characterized as tasks. It is also ag-
nostic with respect to how the task is performed—provided such performance is consistent with the 
specified rules, which may either be very specific (e.g., tasks offering little or no discretion) or which 
offer little or no guidance on how to achieve an end state. For example, individuals might meet the 
requirements of the task of “playing a game of chess” regardless of whether they win or lose the 
game. On the other hand, were those same individuals to cheat (i.e., violate the rules) during the 
game, then they would not have performed the task. 

Having flexibility in defining a task is critical to unwinding the ambiguity of what is meant by task 
complexity—an ambiguity that has been widely observed (e.g., Campbell, 1988; Hærem et al., 2015). 
One way to resolve this ambiguity is to recognize that the task complexity construct has been used to 
describe tasks at three different levels: in terms of its effects on the individual (experienced complex-
ity), in terms of the objective properties of the task itself (intrinsic complexity), and in terms of how 
the task interacts with the environment (extrinsic complexity; Gill & Mullarkey, 2017). Each of these 
levels is related; nevertheless each requires us to think about a task in a different way. 
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Experienced complexity 
The first type of complexity, experienced complexity, takes place within the mind of the task performer. 
Originally described by Campbell (1988), it is largely subjective in nature. Its presence is signified by 
feelings experienced by the task performer, most commonly difficulty (O’Donnell et al., 2005), un-
certainty (Te’eni, 1989), and/or ambiguity (Oedzes et al., 2019). Of the three forms of task complex-
ity, experienced complexity alone exists solely in the mind of the task performer. It can be viewed 
primarily as a function natural mental limitations vis-à-vis memory and processing capability, such as 
the long-known limits on short term memory capacity (e.g., Miller, 1956) and the mechanisms we 
have for overcoming these limits, such as chunking and the gradual process through which complex 
sequences of cognitive activities become automatic (Shiffrin & Dumais, 1981). Because a task’s expe-
rienced complexity can range from negligible to impossibly hard—depending on the individual’s fa-
miliarity and practice (e.g., the task of playing a piano sonata)—the experienced complexity of a task 
is best applied to a single task instance, fixed with respect to a particular performer and a particular 
point in time.  

The level of experienced complexity can also exert a profound effect on the effectiveness of task per-
formance. To achieve optimal performance, the cognitive demands of a task are best kept within a 
range above the levels that lead to boredom and below the levels resulting in information overload. 
The relationship between performance and cognitive demands has been described as the inverted U 
curve (Streufert & Streufert, 1978), signifying the sharp drop off when cognitive demands either fall 
below the desirable range or overload the performer’s cognitive capacity. More recently, occupying 
this peak performance range has been referred to as achieving flow (Csikszentmihalyi et al., 2014), or 
being “in the zone” (Payne et al., 2011). 

Because experienced complexity is influenced by naturally occurring human cognitive limits, the opti-
mal range is unlikely to change dramatically over time. Nevertheless, as previously noted, repetitive 
practice of a task can reduce its demands. Alternatively, the individual may be able avoid uncomforta-
bly high cognitive demands by transferring some or all parts of a task to other performers. These 
may be individuals or, potentially, constructed systems—most commonly IT-based. 

Intrinsic complexity 
The second type of complexity, intrinsic complexity, can be determined from the symbolic representa-
tion of the task, sometimes referred to as the problem space (Card et al., 1983). This form of task 
complexity bears some similarity to Wood’s (1986) view of complexity and Campbell’s objective 
complexity (1988) but differs in two important respects:  

1. Being determined by the problem space used to perform the task rather than the task itself, 
intrinsic complexity may differ across task performers if they apply different problem spaces. 
For example, the intrinsic complexity of selecting elements of a stock portfolio may differ 
substantially if one performer uses a spreadsheet and another uses a Ouija board. (Naturally, 
one may choose to define the task such that the latter does not meet the criteria of the task 
rules).  

2. By specifying that intrinsic complexity is based upon the symbolic representation of the 
problem space, it becomes possible to view it as extending across multiple performers, in-
cluding non-human (e.g., IT-based) symbol manipulation systems. For example, Hærem et 
al. (2015) used North Sea counterterrorism to illustrate how the complexity of a task involv-
ing many human and non-human components might be modeled.  

Because intrinsic complexity is determined by the underlying nature of the problem space, it can be 
treated as objective. There is, however, no clear consensus regarding whether task complexity should 
be viewed as a single value or as a collection of values. Campbell (1988) proposes four dimensions, 
Wood (1986) proposes three dimensions (but proposes that they can be added to form a “total com-
plexity”). Hærem et al. (2015) reject the notion of different types of task complexity, arguing that 
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they are really antecedents of a single underlying construct of task complexity, which they view as a 
function of the nodes and linkages within a task network. Whether or not a single underlying task 
complexity construct exists, we believe the consequences of intrinsic complexity (however it is opera-
tionalized) are likely to correlate with:  

• The size of a computer program capable of fully simulating the problem space.  

• The amount of time it would take to learn to perform the task according to the specified 
problem space.  

• The size of a complete description of the problem space. 

Another good indicator of intrinsic complexity is the amount of memory and computational power it 
takes to complete a task. In this regard, the game of chess would involve a problem space that is 
more intrinsically complex than the game of checkers. The evidence for this could include the fact 
that computers mastered checkers in the 60s but didn’t master chess until the 90s. However, an un-
sophisticated problem space for playing chess might well prove to be smaller than the problem space 
needed to play master-level checkers. With respect to a task’s scope, it is best defined with respect to 
the set of task instances that can be completed using the problem space for which it has been evalu-
ated. 

Under intrinsic complexity, the symbolic representation of the problem space can extend across per-
formers. For example, a skilled U.S. tax accountant might complete a tax return using a set of rules 
(i.e., problem space) very similar to that incorporated in a tax preparation software application such 
as TurboTax (in theory, at least). If that were the case, the intrinsic complexity of the tax preparer 
working independently might be very similar to that of a novice using the software, since the novice’s 
problem space includes access to all the rules embedded in the program. 

Extrinsic complexity 
Extrinsic complexity captures how the external environment responds to the task. It is the form of task 
complexity that is least addressed in the task complexity literature. We believe it to be important, 
however, since it incorporates an aspect of task complexity that goes largely unaddressed by that lit-
erature: the quality of task performance. Unlike experienced and intrinsic complexity, it best applied 
to a very broad set of task instances, as should become clear shortly. 

The roots of extrinsic complexity are in complex systems theory, drawing heavily on concepts from 
evolutionary biology (e.g., Kauffman, 1993). The principal model used is that of a fitness landscape, 
which provides a functional mapping from the attributes of an entity (which might be a gene, an or-
ganism, an individual, an organization) to a fitness value. That value captures the likelihood that the 
entity will (a) survive, and (b) reproduce. In a low complexity landscape, the attributes of the entity 
contribute to the fitness value independently. For example, in a multiple-choice test, the attributes 
might correspond to the individual answers and the fitness might be the resulting test score. Assum-
ing each attribute has a “right” value and is scored independently of the others, the landscape would 
have a single peak—where the correct answer is specified for every question. 

In a high-complexity landscape, the attributes interact with each other to determine fitness; combina-
tions rather than individual values are what matter. Whereas a low complexity landscape will have 
one optimum fitness point (i.e., a peak), a high complexity landscape will be rugged—i.e., will have 
many local peaks and sharp drop offs. A cookbook provides a good practical analogy for a rugged 
fitness landscape. Each recipe in the book could be assigned a fitness value. In this example, fitness 
would be a predictor of the likelihood that you would be willing to make the recipe again after trying 
it (i.e., survival) or even copy it to give to a friend (i.e., reproduction). What makes this landscape rug-
ged is that each recipe represents a local fitness peak in the authors’ minds. Otherwise, they would 
write in those incremental changes (e.g., adding a bit more sugar than the original recipe calls for) 
needed to make it a peak. Thus, the landscape for the cooking task within that one book could 
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consist of (literally) thousands of local peaks (recipes), with countless more peaks across the entire 
cooking landscape. 

The cooking example also illustrates a variety of general complex landscape properties:  

• Individual attributes mainly contribute to fitness in combination with other attributes, e.g., 
the presence of garlic adds to the fitness of some recipes and detracts from others.  

• Seemingly insignificant changes to attributes can have a big impact on fitness, e.g., consider 
what happens when baking powder (the rising agent) is inadvertently left out of a cake rec-
ipe.  

• Local peaks can exhibit very high levels of variation, e.g., some recipes are very popular 
while others will barely ever be used.  

• Even with an understanding of the mechanisms driving fitness, the fitness of a new, untried 
combination is nearly impossible to predict without testing it. For example, when IBM used 
Watson to develop new recipes the results were far from uniformly successful (Pinel, 2015).  

Although the fitness landscape concept has been applied to some business tasks, such as strategy for-
mulation (e.g., Levinthal, 1997), it has not been incorporated into prevailing task complexity models. 
In adapting the fitness landscape concept to task complexity, we can conceive of each task end state 
(which includes information on how the task was performed) as having a fitness value. If the value is 
low, we would avoid using that approach in the future. We would also try to avoid contexts where we 
were forced to use that same approach. Where fitness is high, we would likely use the same approach 
should a similar task instance ever come up (i.e., the approach would survive). Moreover, other per-
formers watching us may seek to imitate the approach (i.e., reproduction). Because we would expect 
performance quality to elicit similar reactions, the values of outcome quality and fitness might logi-
cally serve as proxies for each other.  

Complex landscapes are generally associated with complex systems (such as ecologies). While the un-
derlying factors that lead to complex systems behavior remain the subject of study, three general 
characteristics are commonly associated with increasing complexity (Gill & Mullarkey, 2017):  

• Increase in the number of elements in the system.  

• Increase in the number and density of interactions between elements in the systems.  

• Increase in the rate at which interactions between elements affect each other. 

As landscape complexity grows, we would expect to see the following changes in the landscape’s 
characteristics (Gill & Mullarkey, 2017):  

• Increased number of local fitness peaks: Although there can be many positions on the sim-
plest fitness landscape, there are very few peaks and those peaks are relatively easy to find 
through incremental search. More peaks mean sharper rises and drop-offs and more poten-
tial alternatives to choose between. A landscape with many peaks also increases the risk of 
ending up on a low fitness peak if incremental search is used.  

• Reduced ability to determine meaningful causality: In an environment with low extrinsic 
complexity, main effects dominate interactions, so it is meaningful to impute causality to 
specific attributes. As extrinsic complexity increases, it becomes nearly impossible to decom-
pose attributes that contribute to fitness; experimentation or observation of experiments be-
comes the only way to assess fitness.  

• Distributions of fitness become increasingly non-normal: Where fitness is determined by the 
sum of fitness contributions of individual attributes, fitness values across the landscape are 
likely to follow a normal distribution. In landscapes of increasing complexity, non-normal 
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distributions (particularly those governed by the power law) abound. In the book The Black 
Swan, Nassim Nicholas Taleb (2007) gives a hypothetical example of height following a 
power law, wherein it would be possible to see individuals whose heights exceed the heights 
of another thousand individuals combined. Wealth, a plausible proxy for economic fitness, is 
an example of a value that follows a power law in the real world. For example, the top 1% of 
U.S. earners are wealthier than the entire middle class combined (Kaplan & Kiersz, 2021). 
This would be impossible if wealth followed a normal distribution.  

• Punctuated Equilibrium: Extrinsically complex landscapes lend themselves to punctuated 
equilibrium. This concept was devised by Stephen Jay Gould (Gould & Eldredge, 1972) and 
entails extended periods of homeostasis followed from time to time by large events that 
change the entire landscape. 

These characteristics make it much more difficult, confusing, and frustrating to navigate an extrinsi-
cally complex landscape. While the multitude of peaks can provide huge opportunities, these oppor-
tunities are not uniformly distributed. Fitness power laws raise the stakes (compared with normal dis-
tributions), as the most successful will occupy a position of fitness that may be one hundred, one 
thousand, or ten thousand times better than a mediocre position. Extrinsic complexity also adds an 
element of ambiguity to the results of one’s decisions or efforts. Being more difficult to assess causal-
ity, it is hard to predict the effect that a decision is going to have on one’s fitness overall. The larger 
number of fitness peaks also has the potential of overwhelming people by presenting them with too 
many options to choose from. 

Summary 
The three forms of complexity are summarized in Table 1.  

Table 1: The Three Forms of Task Complexity 

  Experienced 
Complexity Intrinsic Complexity Extrinsic Complexity 

Definition  Complexity expe-
rienced based on 
the cognitive load 
brought about by 
a task  

Complexity in the symbolic 
representation of a task (rules 
and alternatives, processing 
power, etc.)  

Complexity of the landscape 
of task outcomes vis-à-vis  
interrelatedness of elements, 
number of fitness peaks, tur-
bulence of the landscape.  

Result of in-
crease  

Perceived diffi-
culty, uncertainty, 
ambiguity  

Larger problem space, number 
of branches, time to learn  

Fitness landscape ruggedness, 
punctuated equilibrium, 
power laws  

Scope of ini-
tial and target 
state sets  

Very narrow  Sharing the same problem 
space  

Very broad  

Effect of re-
peated task 
performance  

Decreases  Increases  Indeterminant  

COMPLEXITY IN INFORMATION SYSTEMS 
The topic of complexity has been researched frequently in the management and IS fields. In this re-
search, complexity is generally categorized as either the complexity of tasks (Campbell, 1988; Wood, 
1986), or the complexity of systems (Beese et al., 2016; Liang et al., 2015). Previous research has also 
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studied the interaction between task complexity and system complexity wherein a co-dependency 
arises between a task and a system. The user is dependent on the system to complete the task and the 
system is dependent on the user’s knowledge of the system’s semantic relationship with the task. 
From this co-dependency, representational complexity emerges, presenting an obstacle to effective 
use of a system (Lauterbach et al., 2020). As it relates to our framework, representational complexity 
is the intrinsic complexity leftover after users have offloaded some of the intrinsic complexity of a 
task to a system. The experienced complexity of an individual using the system will decrease as the 
user becomes accustomed to it. 

There has been a recent call for more IS research on digital solutions to the problems brought about 
by the complexity of digital systems (Benbya et al., 2020). Sociotechnical systems and the complexity 
thereof result in “wicked” problems that can be tamed but not solved completely (Tanriverdi et al., 
2010). Complexity oriented methods have been applied to such wicked problems as Recommender 
systems (Malgonde et al., 2020). 

Incremental changes in digitized processes can bring about bursts of complexity and large changes in 
structure (Pentland et al., 2020). Research has been conducted as to how to use digital technologies 
to steer organizations through phase changes from old states to desired new states (Sandberg et al., 
2020). Also studied in the IS literature is organizational complexity, or a non-linear interaction be-
tween elements in an organization resulting in emergent effects (Park & Mithas, 2020). When causal-
ity is difficult to define and causal elements are intertwined, Qualitative Comparative Analysis can be 
used to glean insights and make predictions without assuming that causal factors are decomposable 
(Iannacci et al., 2022). 

THE PROPOSED THEORY 
The use of IT in task performance can potentially impact all three forms of task complexity. We fur-
ther propose that these three forms of complexity, when enabled by IT, can interact to establish what 
we call a complexity cycle. This cycle, illustrated in Figure 1, begins when—for whatever reason—the 
experienced complexity associated with performing task instances (along with anything else happen-
ing in parallel) moves performers towards the excessive demand side of the previously mentioned in-
verted U curve. The performers then have a variety of options to move to a more comfortable level 
of experienced complexity. These include:  

• Practicing the task until it becomes routine.  

• Taking shortcuts (e.g., imitating other task performers) to reduce the cognitive demands of 
the task.  

• Finding other performers to share the task with.  

• Using IT to offload all or part of the task with performers. 

If the last of these options is selected, the intrinsic complexity of the task will likely increase. For ex-
ample, when individuals employ tax preparation software to complete their income taxes, the soft-
ware not only performs necessary computations—which would not have much impact on intrinsic 
complexity—it also provides them with access to a vastly expanded problem space relating to the tax 
code. While an individual task performer’s decision to switch to tax software is not likely to have 
much impact on the tax preparation fitness landscape, if many performers make this switch, we are 
likely to see such software evolve quickly, and many new variations emerge. Moreover, if the use of 
the software becomes widespread, it could impact the agency responsible for collecting taxes and up-
dating the tax code. The increased flexibility provided by the new systems could then embolden legis-
lators to pass more complicated tax laws, leading to increased intrinsic complexity of the tax prepara-
tion task. Furthermore, individual task performers may be impacted by extrinsic complexity increases 
driven by forces outside of the tax preparation task. For example, the introduction of new asset 



Gill & Gill 

9 

classes (e.g., bitcoin) may demand changes to the system of tax laws. Because the fitness landscape 
for one entity co-evolves with fitness landscapes for other entities (Kauffman, 1993), IT-enabled ex-
trinsic complexity from one task landscape can transform other task landscapes. As a result, the be-
haviors that are associated with complex landscapes (e.g., ruggedness, indeterminant causality, power 
law outcomes, punctuated equilibrium) can bleed across landscapes. The increasingly turbulent be-
haviors of the task environment will cause performers to seek out additional help in reducing experi-
enced complexity. If done through use of IT, the cycle continues. 

  

 
Figure 1: The IT-driven complexity cycle 

APPLICATION OF THE THEORY: CHATGPT AND OTHER 
EXAMPLES 
In this section, we briefly explore how the Complexity Cycle might be used to identify potential unin-
tended consequences of widespread adoption of emerging technologies. We begin by looking at 
ChatGPT, then briefly consider blockchain and quantum computing. 

CHATGPT 
A recent example that illustrates the how the complexity cycle may be applied can be found in the 
recent (December 2022) public release of OpenAI’s advanced chatbot: ChatGPT. The application 
employs advanced language modeling based on user prompts and a large language model and exem-
plifies many of the capabilities of generative AI. The tool uses reinforcement learning from human 
feedback, wherein the actions taken by ChatGPT in the form of language output are rated by users, 
allowing the platform to learn from every attempt to respond to a prompt (Ramponi, 2022).  

ChatGPT has been applied to accomplish a variety of tasks such as college essay writing (Mitchell, 
2022), medical writing (Biswas, 2023), and journalistic writing (Longoni et al., 2022). It can explain 
complex concepts and has even managed to pass a Wharton MBA exam (Rosenblatt, 2023). 
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Looking at the tool from a task perspective, consider the example of ChatGPT’s success at essay 
writing through the lens of the complexity cycle. At a university in South Carolina, a student submit-
ted a 500-word essay on David Hume’s paradox of horror (Mitchell, 2022). The essay was of such a 
quality that the professor was unable to prove that it was not the student’s own writing, except by 
goading the student into confessing. It is worth noting that the decision to use ChatGPT to write this 
essay on Hume represents a decrease in experienced complexity, but an increase in intrinsic complex-
ity—both drastic. Experienced complexity is decreased because the student no longer had to craft a 
500-word essay on Hume, but rather a one to two sentence prompt to feed ChatGPT. Intrinsic com-
plexity increased since the problem space of the task grew given that it was drawing upon the entire 
base of knowledge contained in ChatGPT. 

Just as the problem space of the essay writing task was increased, the problem space of many other 
tasks has been increased by way of the offloading of these tasks to ChatGPT. By early February of 
2023, ChatGPT was well on its way to surpassing 100 million users (Garfinkle, 2023). Stated another 
way, that corresponds to 100 million users all employing essentially the same problem space for a 
wide variety of tasks. We might then speculate that if millions of individuals addressing a similar 
problem all come up with similar solutions (by virtue of using the same problem space) much more 
rapidly than in the past, the fitness of these solutions is bound to be impacted—leading to a rapidly 
changing fitness landscape. This would translate to an increase in extrinsic complexity facing the per-
formers. Closing the loop, we might further speculate that the increasingly dynamic fitness landscape 
driven by generative AI would, in turn, lead to increases in experienced complexity. These increases 
would, in turn, motivate further offloading of task activities to AI tools. And so, the cycle would con-
tinue. 

BLOCKCHAIN 
While exploring the mechanics of blockchain technology is beyond the scope of our paper, the key 
feature of blockchain is to provide a means of recording transactions that: 

• Cannot be altered once a transaction is recorded 
• Can be audited 
• Can be conditioned on the completion of other transactions. 

Collectively, these three capabilities represent activities that would often require an intermediary, 
such as a lawyer or agent. In consequence, a key systemic change expected to occur with blockchain’s 
increasing adoption is widespread disintermediation (e.g., Srikanth, 2017). 

Viewed in terms of the extrinsic complexity of the environment, widespread disintermediation might 
be expected to exert a significant impact. In the current environment, intermediaries play an im-
portant role in controlling the speed and frequency of transactions. For example, intermediaries can 
determine the speed at which funds are transferred between accounts or the timing of a real estate 
closing. Once disintermediated, these transactions could occur much faster and at lower cost—en-
couraging a greater frequency of smaller transactions. Both of these systemic changes would typically 
increase the extrinsic complexity of the environment according to our model. 

With increasing extrinsic complexity, individuals participating in the system—particularly those oper-
ating as intermediaries or depending on intermediaries--would experience increasing cognitive de-
mands. In response, they would be motivated to implement additional blockchain and other technol-
ogies, driving further increases in extrinsic complexity, and so forth. 

QUANTUM COMPUTING 
Quantum computing refers to a class of computing technologies that employ principles of quantum 
mechanics, such as superposition and entanglement. Reliance on these principles cause it to differ 
radically in architecture and capabilities from today’s ubiquitous digital technologies. For this reason, 
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quantum technologies are expected to offer huge advantages for certain types of computing prob-
lems, while providing little or no benefit for others (Inglesant et al., 2021). 

Because quantum phenomena include the ability to occupy many states simultaneously, the technol-
ogy is expected to revolutionize tasks that can benefit from pursuing multiple threads simultaneously. 
Examples of such tasks include encryption, optimization, and simulation. Quantum computers may 
also support certain problems that are “beyond the capability of any classical computer” (Inglesant et 
al., 2021, p. 1368). 

The practical applications of quantum computing remain uncertain at the present time. Its radical ar-
chitecture and anticipated capabilities suggest, however, that its impact on the global economic envi-
ronment could be transformative. For example, quantum computing has the potential to render ex-
isting encryption algorithms ineffective (Inglesant et al., 2021). Should this happen, virtually every in-
formation system where privacy or security is important would need to be redesigned. We speculate 
that such a development could lead to a discontinuity in our technology environment unparalleled in 
digital history.  

In our two earlier examples, ChatGPT and blockchain, we described a process whereby increasing 
use of technologies gradually causes the extrinsic complexity of the economic and technology envi-
ronment to grow. Such growth would be expected to increase characteristic complex system behav-
iors, such as punctuated equilibrium. Quantum computing, in contrast, illustrates a potential scenario 
whereby the technologies themselves precipitate a massive discontinuity in the economic environ-
ment. In all three examples, however, human participants in the system would be expected to react 
by relying more heavily on technologies to reduce their experienced complexity. And the cycle con-
tinues. 

UNINTENDED CONSEQUENCES OF COMPLEXITY CYCLE 
Information technology has yielded many benefits to society at large. These include increased 
productivity, greater ease of access to information, a wider variety of opportunities for recreation, 
and enhanced capabilities for social interaction. Nevertheless, the complexity cycle model posits that 
these may come with long-term hidden costs. For our purposes, it is useful to distinguish between 
the costs that are: 

• directly related to the individual performers 
• likely to impact the performance of the task, and 
• more systemic in nature and are expected to occur only with the widespread deployment of 

the technologies in question. 

INDIVIDUAL PERFORMER RISKS 
Deskilling: When IT is used to reduce the experienced complexity associated with a task, the skills that 
are transferred are likely to atrophy. In the era of intelligent systems, more and more decision-making 
elements of the task are likely to be transferred, often using data analytics and artificial intelligence as 
a replacement for domain expertise (Sambasivan & Veeraraghavan, 2022). That will leave performers 
with a reduced skill set and, most likely, reduced adaptability to future task changes. 

Barriers to advancement: Increasing reliance on IT in performing tasks can potentially create barriers to 
further advancement in an organization in two ways. The first is a direct consequence of deskilling, 
which can increase the gap between what the individual learns on the job and what needs to be 
known to move to the next organizational level. The second is that jobs will be redesigned to de-
mand technical skills, such as the ability to use AI effectively, that existing intermediate-level workers 
may not possess (Shiohira, 2021, p. 14). 
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TASK-SPECIFIC RISKS 
Perpetuation of Past Practices: As IT is applied to more intrinsically complex tasks, the ability of develop-
ers and task performers to articulate the rules governing system behavior is impaired. Machine learn-
ing and other AI techniques address this problem by inferring relationships from past data. Historical 
bias and population bias, for example, can both lead to discriminatory results when data is used to 
train machine learning systems (Mehrabi et al., 2021). These relationships are often not in the form 
of understandable rules but are instead embedded in opaque statistical relationships and coefficient 
weights. If such data incorporated biases from past decision-makers, such biases will likely be perpet-
uated undetected. 

SYSTEMIC RISKS  
The co-evolution of landscapes means that even if a task doesn’t experience the risks just described, 
it may still be impacted by the growing extrinsic complexity of its environment. Examples include the 
following. 

Erosion of Explainable Causality: What constitutes causality remains a topic of debate, even within the 
IS field (Markus & Rowe, 2018). It is commonly framed as a one-way relationship between a set of 
factors (the cause) and a set of outcomes (the effect). While causality seems likely to exist regardless 
of the extrinsic complexity of the system in which a phenomenon is observed, our ability to articulate 
that causality is likely to decline as its complexity grows. For example, what causes one recipe to 
“taste better” than another? 

The interconnectedness and interactions between elements that characterize extrinsic complexity 
make it very difficult to predict the ceteris paribus effect of an incremental change to a task on its 
overall fitness. Owing to the high level of interaction between attributes as complexity grows, simple 
statistical tools such as linear regression fail when observed data is drawn from a rugged landscape 
(Gill, 2012). Individuals operating on such landscapes will also find that the fitness associated with 
untested combinations is nearly impossible to predict. 

Shortened Time Horizons: The interconnectedness enabled by IT can cause changes in one part of the 
task environment to ripple through all parts of the task environment and bleed into other task envi-
ronments. Responses to changes from systems and agents tend to become much faster as infor-
mation is exchanged in nanoseconds. This can shorten the periods of homeostasis between system 
changing events characterized by punctuated equilibrium. In addition, since its very inception, IT has 
been able to process quantitative data faster and more accurately than humans. Unfortunately, we 
could find no research that specifically addressed the impact IT use on individual time horizons. This 
absence may not be surprising, as even futurists have trouble clarifying the concept (e.g., Brier, 2005). 
That research does point out, however, that complexity has a significant impact on how far ahead we 
can visualize (p. 844). It follows that as IT increases the rate at which changes can proliferate though 
an environment, the time frame over which we can comfortably envision the consequences of our 
actions will shorten.  

Owing to the punctuated equilibrium behavior observed in many extrinsically complex systems, in-
cluding business environments (Gersick, 1991), we can also predict that increasing extrinsic complex-
ity could lead towards short-term bias. The rationale is as follows. Discontinuities are perceived as 
being unpredictable, both in timing and effect (Taleb, 2007). We would expect analysis of the short-
term future (i.e., before the environment experiences a major transition) to be more effective at re-
ducing uncertainty than analysis of the long term (given the unpredictability of discontinuities). We 
would therefore expect that increasingly relying on IT to analyze decisions (as a means of controlling 
experienced complexity) would make us more confident of our analysis of short-term solutions com-
pared to long term solutions. Since decision theory assumes that the level of uncertainty is negatively 
factored into our choices, applying an approach that reduces the uncertainty of the short-term 
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options while having minimal impact on longer term options would be expected to drive our prefer-
ence towards the more certain (short term) choices, all other things being equal.  

Inequality: The direct implications of IT on inequality—through differentials in access and differen-
tials in skills—have long been discussed (Hargittai et al., 2019). The increasing use of IT in tasks and 
the resultant incorporation of tech elements into these systems certainly would tend to exacerbate 
this form of inequality. Furthermore, although deskilling directly impacts task performers, reducing 
their potential economic value in the long run, it also supports the creation of a parallel (and likely 
much smaller) set of task performers—the creators of the technologies used to support the task. 
That set of individuals must necessarily become more and more skilled as they take on tasks demand-
ing problem spaces of ever-increasing intrinsic complexity.  

The potential consequences for inequality of IT’s impact on the extrinsic complexity of the environ-
ment is less recognized. There is considerable empirical evidence that extrinsically complex systems 
produce non-normal distributions of outcomes, frequently in the form of power laws (e.g., Taleb, 
2007). The result: highly visible inequality. While this effect has not been directly addressed, a self-
reinforcing cycle leading to inequality driven by IT (Ragnedda et al., 2022) and inequality driven by 
structural changes that were enabled by IT (Bauer, 2016), such as complex supply chains, have been 
proposed. Both these proposed effects would be consistent with growing extrinsic complexity. 

Tribalism: The use of IT is not the only way to reduce experienced complexity. In an extrinsically 
complex environment, we have already noted that causality is very hard to determine, so analysis may 
well fail in the search for fitness. An alternative is to seek out individuals or practices that appear to 
be high-fitness and imitate them as closely as possible. In fact, simulations suggest that such imitation 
may be an excellent approach to achieving high fitness as extrinsic complexity grows (Gill, 2012). In 
highly rugged landscapes, however, even small differences in attributes can have a large impact on 
fitness (Gill & Mullarkey, 2017). It can therefore benefit the individual to seek out other individuals 
who are as similar as possible across relevant attributes. By observing how the landscape rewards and 
punishes the behaviors of these self-similar individuals, it becomes possible for the decision-maker to 
avoid the risk of engaging in behaviors that could result in serious fitness declines. Moreover, as land-
scapes become more extrinsically complex, the risk of large fitness declines accompanying small 
changes grows. The logical consequence of dealing with such landscapes is for self-similar individuals 
to form into groups, an outcome referred to as homophily (Gill, 2012). For such a group to be effec-
tive in overcoming ruggedness, all members would need to share a common set of core attributes 
(e.g., personal characteristics, opinions, values) that define the group while allowing variation in non-
core attributes as a means of testing other combinations for fitness. Individuals could be members of 
several of these groups, but the core attributes would necessarily be different across groups. For ex-
ample, the core attributes for a group of individuals based around performing the same task might be 
quite different from the attributes associated with membership of a weekly book club.  

In addition to increasing the ruggedness of the landscape—thereby motivating the formation of these 
groups—IT also helps to enable their formation and ongoing activities. The second stage of the inter-
net era, sometimes referred to as Internet 2.0, included the formation of social networks, making it 
easier to:  

• Form homophilic groups untethered by geography.  
• Share experiences with other group members.  
• Reinforce activities that support group identity and castigate those that are inconsistent with 

the group’s defining core attributes.  

A potential consequence of these networks—perhaps unintended, perhaps not—is the formation of 
echo chambers (Kitchens et al., 2020). In these environments, expressions of support for core attrib-
utes are naturally encouraged. Variations across non-core attributes will similarly be encouraged, 
since they provide evidence for the fitness or non-fitness of untested combinations that will likely be 
relevant to the rest of the group. The underlying structure of rugged fitness landscapes also suggests 
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that with growing extrinsic complexity, members of dissimilar groups will become increasingly re-
sistant to compromise. On a rugged landscape, the area between two adjacent peaks is necessarily a 
low fitness valley. This can lead to an underlying hostility between groups that can best be described 
as tribalism, a term that has been used to describe the subreddit communities on the reddit platform 
(Robards, 2018). Unfortunately, the very erosion of causality that accompanies increased extrinsic 
complexity makes it unlikely that logical arguments or appeals to causality will have much effect in 
swaying opinions. 

IMPLICATIONS FOR INFORMING SCIENCE 
The proposed complexity cycle (and the associated specific/systemic) risks could have significant im-
plications for how we can inform effectively—the core of informing science: 

The fields that comprise the discipline of Informing Science provide their clientele with infor-
mation in a form, format, and schedule that maximizes its effectiveness. (Cohen, 1999, p. 
215). 

In this section we first consider the informing challenge presented by the proposed complexity cycle 
and then consider the paradoxical problem of trying to address that challenge using IT. 

THE INFORMING CHALLENGE OF COMPLEXITY  
The study of complexity and its impact on informing has been a recurring theme in the informing 
science transdiscipline. For example, a single client resonance model, shown in Figure 2, has been 
proposed to illustrate the challenges of ensuring that a client accurately receives and internalizes a 
sender’s message. Rather than being thought of as a theory, it is best viewed as a conceptual scheme 
(Gill, 2011) for thinking about how messages are internalized by a client. Of particular importance, 
rather than assuming that a sender’s messages are faithfully received, it highlights the potential for 
communications to fail owing to lack of attention, distortion/interference, and outright rejection. 

 
Figure 2: Single Client Resonance Model (Gill, 2015, p. 268) 
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The attention filter is used to describe situations when clients ignore messages sent to them. Attention 
may be withheld either intentionally (e.g., by focusing attention elsewhere) or unintentionally (e.g., by 
not attending to the channel used to send the message). It can serve to reduce experienced complex-
ity by limiting the client’s information processing load. 

The potential role that increasing IT-driven complexity can play with respect to attention should be 
self-evident. IT has enabled numerous channels that could not have otherwise existed: email, text, 
social networks, communication apps, etc. The result is not only more channels than we can attend, 
but also more content than we can possibly absorb. Deskilling may also prevent clients from attend-
ing to messages that they perceive to fall outside of their domain of understanding. 

The information, cognitive and risk/time filters can subject messages to distortion or interference as well as 
preventing messages from being absorbed. The challenge here is that incoming messages do not exist 
in a vacuum. Instead, they are interpreted subject to what we already know or believe. The infor-
mation filter screens out information that we perceive that we already know—whether that is the 
case or not—and limits the rate of information transfer. The cognitive filters assess the consistency 
of the message with our existing beliefs, in some cases distorting it to achieve greater consistency or 
blocking it altogether. Not only do these filters potentially impact experienced complexity through 
reducing the amount of information being processed, they can also reduce the difficulty, uncertainty 
and ambiguity that can stem from conflicting information. 

With respect to the impact of systemic risks, the erosion of explainable causality makes it harder to 
present simple explanations. That, in turn, is likely to make pre-existing knowledge harder to disrupt 
(the cognitive filter) and to make it more likely that we will treat an incoming message as something 
we already know (the information filter). A similar argument can be made for the effect of perpetua-
tion of past practices. Shorter time horizons, resulting from increasing extrinsic complexity, are likely 
to encourage us to focus mainly on the immediate consequences of a message. Long-term implica-
tions are therefore more likely to be ignored. 

The motivation/visceral factors filters can lead to rejection of messages regardless of their veracity. If we 
do not trust the source of the message, or if accepting a message as true might threaten our position 
in the community, we will tend to reject it. A similar rejection is likely if a message generates negative 
emotions. By the same token, a client may be motivated to suspend critical judgment of a message 
from a trusted source or one consisting of content that the client wants to hear. 

The most obvious systemic risk for these filters is tribalism, which is built around a common set of 
shared core beliefs. Polarization of political beliefs could be used as an example of this phenomenon. 
In a world of high extrinsic complexity, assessing the veracity of a message through logical analysis 
may be impossible (i.e., erosion of explainable causality). In such cases, reinforcing tribal membership 
though achieving consistency with core beliefs may be the operative motivation in accepting or re-
jecting a message. 

THE PARADOX OF ADDRESSING COMPLEXITY’S INFORMING CHALLENGES 
We do not foresee any all-purpose solution to addressing complexity’s informing challenges. Never-
theless, if we choose to attack the challenges directly, it is relatively easy to propose potential ap-
proaches—nearly all of which involve information technology. For example: 

• AI systems could be constructed that attend all channels and provide clients with all infor-
mation that they perceive would be relevant to the client. Such curation systems could work 
collaboratively with the attention filter. 

• Creating multi-sensory channels that take advantage of our ability to absorb content more 
rapidly when presented simultaneously in multiple formats. These channels can potentially 
increase the effective capacity of the information filter. 
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• New channels could be devised that are specifically constructed to limit the potential infor-
mation content of messages, making them more easily absorbed and more immediate. This 
would reduce the load on the cognitive and risk/time filters. 

• AI-enabled aggregator systems could be constructed that provide the client with only con-
tent that is unlikely to be rejected or distorted. This would limit the demands on the motiva-
tion and visceral filters.  

Unfortunately, these approaches (and many others that we could propose) are not novel. Indeed, 
every one of them is already in place or advancing rapidly (e.g., ChatGPT, the Metaverse, Tik Tok, 
Flipboard). More to the point, however, widespread adoption of fixes such as these will ultimately 
serve to increase the overall extrinsic complexity of our environment for the reasons previously de-
scribed. We would then expect experienced complexity to rise, creating a need for new solutions. 
And the complexity cycle persists… 

The other approach to addressing the negative consequences of the complexity cycle would be to 
abandon or drastically limit the use and evolution of IT. We have already seen efforts along these 
lines with respect to AI (Levin & Downes, 2023). Our own view, however, is that nothing short of 
complete societal collapse—as occurred with the advent of the Dark Ages in Europe—will put the 
IT genie back in the bottle.  

Fortunately, we believe that addressing the effects of the complexity cycle does not require us to be-
come a Luddite. Our view is that the greatest danger presented by over-reliance on IT is that we—as 
a society—loose the capacity to process information without IT. We can already see some examples 
of this. Just ask typical young adults to perform two-digit multiplications in their head or read a para-
graph written in cursive. From a practical standpoint, these skills are nearly useless in a world where 
IT is ubiquitous. Nevertheless, we see them as being representative of a class of cognitive skills that, 
as a society, we should be concerned about losing. 

Rather than attempting to disable the complexity cycle—assuming that would be even remotely pos-
sible—our recommendation would be twofold: 

1. Recognize the cycle’s potential effects and treat them as an externality—the term econo-
mists use to describe broader negative impacts of locally beneficial activities. 

2. Build activities into our education system and everyday life that develop and maintain cogni-
tive capacities that are likely to atrophy through overuse of IT. 

Economists have already considered a variety of remedies for the first of these—typically a mix of 
regulation and taxation. These have become increasingly challenging to implement in a global con-
text. For example, what happens if one super-power regulates the development of AI while another 
allows it to run free? Despite these practical obstacles, the first step will necessarily be to recognize 
that a problem does exist. 

To implement the second of these recommendations would require us to reconsider current trends, 
many of which seem to be going in the opposite direction. Activities that served to develop cognitive 
skills that traditionally do not rely on IT—such as the arts, music, and languages—have been de-em-
phasized in K-12 curricula (e.g., Commission of the Arts, 2021; Commission on Language Learning, 
2017). In higher education, enrollments in the humanities are dropping (Pergola, 2014; Townsend & 
Bradburn, 2022). Moreover, the humanities departments that remain have become increasingly uni-
form in their politics (Magness & Waugh, 2022/2023), presenting a significant visceral barrier to par-
ticipation by individuals outside of the tribe.  

Reversing these trends would not be easy. The motivation filter could present a significant barrier, 
since the relative short-term advantages that these cognitive skills confer have likely declined owing to 
technological advancements, such as mathematical equation solvers, computer generated artwork, 
recorded music, generative AI, and automated translators. To prevent further atrophying of such 
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skills, a compelling case needs to be established for their benefits to the individual in an increasingly 
automated world. Such a case will need to be made through rigorous research—emotional appeals 
are likely to fall short. Unfortunately, anecdotal arguments coming from older individuals who al-
ready acquired such skills in a world where IT was not ubiquitous are unlikely to be persuasive to 
Millennial and Z-generations that grew up relying on technology and connectivity. 

LIMITATIONS 
We have referred to the complexity cycle as a theory based on the widespread acceptance of the term 
“theory”. Convenience aside, we might have better described it as a conceptual scheme (Gill, 2011) 
for a couple of reasons: 

DUBIOUS FALSIFIABILITY 
First, given the nature of the complexity cycle and the general difficulty of establishing meaningful 
causality in complex systems, we are not sure how it could be tested rigorously. Having said this, it 
would certainly be possible to design investigations that could lead to results consistent or incon-
sistent with the complexity cycle’s predictions. For example: 

• Interpretive of individual tasks and performers studies could assess the degree to which 
adoption of supporting technologies (a) was motivated or partially motivated by performers 
experiencing high cognitive loads, and (b) if these options were initially successful in bring-
ing cognitive demands to acceptable levels. The proposed theory would predict both (a) and 
(b) to be the case, but that, over time, increases in the extrinsic complexity of the broader 
environment would necessitate further IT adoption. 

• Longitudinal studies could be conducted that examine the behaviors of industry environ-
ments before and after the widespread adoption of a technology. The proposed theory 
would predict that indicators of system complexity (e.g., frequency and size of discontinui-
ties, emergence of power law distributions of participant performance, increasing diversity 
in successful participants/business models) would increase. 

Unfortunately, these types of studies—particularly the latter—would be prone to demonstrating cor-
relation rather than proving causality. We certainly would not assert that the complexity cycle is the 
sole force involved when a technology is implemented. As such, excuses could always be found not 
to reject the theory upon encountering inconsistent results. As Popper (1963) suggested, an unfalsifi-
able theory is not scientific. 

SENSEMAKING 
Second, one of the most valuable uses of a conceptual scheme is to provide a means of sense-making 
(Gill, 2011). We believe that the three forms of task complexity and their cyclical relationship provide 
a useful way of framing IT’s impact on tasks and the broader environment. As is the case for concep-
tual schemes in general, it is up to the individual to assess whether it seems applicable (and useful) in 
a particular situation. 

We further note that despite this paper’s focus on the dark side of IT, our view of technology is no-
where near as grim as the paper would suggest. Nor would we recommend draconian measures to 
inhibit future IT implementation. We simply seek to build awareness of possible negative conse-
quences. For future research, our greatest concern with the conceptual scheme is its vacillation be-
tween task-specific effects (which are relatively easy to detect and illustrate) and broader system ef-
fects, which are interesting but not necessarily intuitive or testable. More thoroughly researched ex-
amples are needed to better illustrate the relationships we propose, as well as counterexamples to es-
tablish their limits. 
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CONCLUSIONS 
This paper’s goal has been to propose a relationship between the use of IT to address task complex-
ity and widely observed unintended negative consequences. By increasing our reliance on technology, 
we change tasks in positive ways, but open ourselves up to unintended and undesired side-effects at 
the task and broader environment levels. As regards task-level effects—such as deskilling and perpet-
uation of undesirable past practices—we believe that recognizing the danger and employing thought-
ful task redesign can go a long way towards reducing the damage. 

The more speculative element of the paper is the role IT may play in making co-evolving environ-
ments more extrinsically complex. We acknowledge that for this phenomenon, remediation is more 
difficult. It would be a fool’s errand to try to halt the use of all IT that could increase extrinsic com-
plexity. IT provides far too many direct benefits. We instead believe that extrinsic complexity should 
be treated as a negative externality of the creation and modification of information technologies and 
systems. Unfortunately, externalities are always difficult to deal with and the most readily available 
cures (e.g., taxing the behavior or regulating it) are often worse than the disease. If we decide that IT-
enabled complexity must be contained, we must be careful lest the measures we put in place to com-
bat complexity end up making the task environment even more complex. 
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