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ABSTRACT  
Aim/Purpose To provide a systematic approach to defining task complexity using a three 

worlds model previously introduced in informing science research. 

Background The task complexity construct presents researchers with a quandary. While it 
appears useful on the surface, repeated attempts to define it rigorously have 
failed to gain traction in the broader research community. The level of incon-
sistency between definitions is shown to have changed little in the past 20 years. 

Methodology Using a common framework that treats task complexity as a latent construct re-
siding between sources and outcomes, moderated by both task familiarity and 
task discretion, separate models for each of the three worlds are developed. 

Contribution Our paper proposes a potential path forward by showing how many issues in 
past task complexity research can be reconciled by framing the construct ac-
cording to the three worlds model: the world we experience, the world of hu-
man artifacts, and the “real world.” 

Findings The framework defines experienced complexity as occurring in the mind of the 
task performer while performing a single task instance, intrinsic complexity as a 
function of the internal characteristics of the problem space used to perform a 
bounded set of task instances, and extrinsic complexity as the ruggedness of the 
fitness landscape in which the task is performed. 

Recommendations  
for Practitioners 

It presents a hypothetical example of how the model might be applied to the 
task of determining author contributions to a paper. 

Recommendations  
for Researchers  

It offers a path to convergence for definitions of task complexity. 
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Future Research The three worlds of task complexity can potentially be applied to many practical 
problems. 

Keywords task complexity, rugged landscape, objective complexity, familiarity, discretion 

INTRODUCTION 
Who cares about “task complexity?” Intuitively, the answer would seem to be everybody. We live in a 
world where the term “complexity” is widely and frequently used. Assertions such as “the complexity 
of our work lives is growing” would likely provoke little argument – even if we are not precisely sure 
what they mean. Why wouldn’t we want to apply the concept to the tasks we perform in life and in 
our jobs? 

Viewed from a research perspective, however, the use of task complexity raises many red flags. Over 
the past four decades, several attempts have been made to define the task complexity construct. De-
spite these efforts, researchers applying the construct have not come to a consensus on what the con-
struct represents (Hærem et al., 2015). Worse, different approaches to the construct often lead to 
contradictions, threatening the internal validity of the research. 

The study of task complexity has a long history in informing science transdiscipline. In the seminal 
paper that laid out the case for informing science, Cohen (1999) states: 

The driving force behind the creation of informing environments and delivery systems is 
that a task needs to be accomplished (p. 217). 

Six years later, T. G. Gill and Hicks (2006) did a systematic review of the task complexity literature, 
confirming earlier noted inconsistencies in task complexity definitions and proposing five classes of 
definition. Subsequently, these five classes were abstracted into three dimensions (T. G. Gill & 
Murphy, 2011). The three dimensions, in turn, were identified as closely paralleling the three worlds 
(Schmitt & Gill, 2019), as described by Popper (1972). The objective of the present paper is to 
provide a greater level of rigor in advancing the three task complexity constructs, to demonstrate 
how they can be conceptualized using a more general framework, and to consider how they might 
apply to informing science research and to practice. 

We begin by examining how perspectives on task complexity have evolved over the past decade. We 
conclude that they continue to differ across researchers and have exhibited little convergence since 
they were first examined in the informing science literature (i.e., T. G. Gill & Hicks, 2006). We then 
review how task complexity can be conceived through the lens of Popper’s (1972) three worlds: (a) 
the world experienced within our minds, (b) the world as humans represent it symbolically (i.e., the 
problem space), and (c) the “real world” as it interacts with the task. Using the terminology adopted 
in the informing science literature (e.g., T. R. Gill & Gill, 2024), we refer to these three worlds of task 
complexity as experienced, intrinsic, and extrinsic, respectively. We then introduce a common model 
across the three worlds in which each form of task complexity is treated as a latent construct between 
sources of complexity and outcomes of complexity, moderated by the constructs of familiarity and 
task discretion. 

In our subsequent discussion, we consider how the worlds interact with each other. We then examine 
the potential implications of the framework for both informing science research and practice. Finally, 
we offer some comments on the limitations of the research and possible future directions. 

A BRIEF HISTORY OF TASK COMPLEXITY 
Before presenting the three-world framework for characterizing task complexity, we must first justify 
why yet another attempt to define the task complexity construct is warranted. Hærem et al. (2015) 
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and Liu and Li (2012) already offer excellent reviews of the evolution of the construct. In this sec-
tion, we highlight key contributions in that evolution with the objective of assessing whether the con-
struct is approaching convergence. 

The best-known systematic attempts to clarify the meaning of the task complexity construct ap-
peared in the 1980s. The first of these, Wood (1986) emphasized that a task’s complexity was insepa-
rable from how we defined a task. He proposed four general ways a task could be characterized: (i) as 
a stimulus provided to the task performer (“task qua task”); (ii) as a set of behavior requirements; (iii) 
as a set of behavior descriptions; and (iv) as a set of ability requirements. Drawing most heavily on 
the first and second of these, he characterized a task in terms of acts, products, and information cues. 
Using this conceptualization, he proposed three sources of complexity: (1) component: a function of 
the number of distinct acts required to perform the task; (2) coordinative: describing the relationship 
between task inputs and products; and (3) dynamic: capturing the degree to which changes over time 
in the task environment impact the relationships between inputs and products as the task is per-
formed. Total complexity was then defined to be a function of three sources. In Wood’s perspective, 
a task’s complexity could be determined based on the characteristics of the task itself, largely inde-
pendent of the performer. 

The second contribution, Campbell (1988), reviewed existing research that employed the task com-
plexity construct. Campbell argued that the way task complexity was defined or used fell into three 
general categories: (1) psychological experience, defined in terms of what the performer experienced; 
(2) task-person interaction, defined in terms of the characteristics of the task as they interact with the 
capabilities of the performer; and (3) objective task complexity, defined strictly in terms of the char-
acteristics of the task, independent of the performer. He then identified four sources of objective 
complexity: multiple paths, multiple desired end states, conflicting interdependence among paths, and 
uncertain or probabilistic linkages. Campbell (1988), like Wood (1986), proposed complexity should 
be treated as a function of task characteristics. 

A couple of subsequent studies of task complexity surveyed how the construct was used and defined. 
T. G. Gill and Hicks (2006) identified 13 distinct ways in which task complexity was conceptualized. 
They organized these into five complexity classes, arguing that any definition that overlapped classes 
was bound to exhibit inconsistencies. As an example, complexity related to the difficulty experienced 
by the task performer will likely decrease as repeated instances of the task are performed. In contrast, 
complexity, defined in terms of the amount of knowledge accumulated by the task performer, tends 
to increase with experience. Similarly, whether a financial analysis task is performed with or without a 
computer spreadsheet tool will have a significant impact on the level of complexity experienced by 
the performer while not necessarily leading to a significant difference in the knowledge required to 
perform the task. 

Liu and Li (2012) presented an impressive systematic inventory of task complexity definitions, identi-
fying 24 different ways the construct had been defined/used. They broke these into three categories: 
(1) structuralist – based on the structure of the task, (2) interaction – based on the interaction be-
tween performer and task, and (3) resource requirement – based on the resources required to per-
form the task. In their analysis, they expanded Wood’s (1986) three task components to six: Goal, 
Input, Process, Output, Presentation, and Time. They further derived ten dimensions of task com-
plexity: size, variety, ambiguity, relationship, variability, unreliability, novelty, incongruity, action com-
plexity, and temporal demand. 

The most recent rethinking of the task complexity construct was proposed by Hærem et al. (2015). 
Among their most significant contributions were treating task complexity as a function of a network 
of actors rather than limiting task complexity to tasks performed by a single individual and proposing 
how the task complexity construct could be extended to multiple levels of analysis. As an example, 
they used a North Sea counterterrorism (NSCT) task with actors that included boats and planes – 
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each of which had crews of people. They analyzed the task in terms of the events (acts) and infor-
mation cues exchanged between actors. Based on this model, they proposed that task complexity 
should be expected to rise exponentially as the size of the network grows, as opposed to earlier linear 
models such as Wood’s (1986). They also proposed that the task complexity construct could be use-
ful either as an independent variable (input) or dependent variable (output) in organizational re-
search. 

A particularly interesting observation made by Hærem et al. (2015) involved the lack of impact that 
the previous studies of the task complexity construct had on how the construct was operationalized 
in subsequent research: 

Of the 705 studies in the Social Sciences Citation Index citing either Wood (1986) or Campbell 
(1988), we found only 39 in which scholars attempted to operationalize task complexity in line 
with Wood’s and Campbell’s original definitions (Hærem et al., 2015, p. 448). 

To assess if the convergence problem persisted, for the purposes of the present paper, we examined 
a sample of 50 articles with “task complexity” in the title that were published subsequent to Hærem 
et al. (2015), drawn from Google Scholar. We used the T. G. Gill and Hicks’ (2006) 13 construct 
scheme to classify usage. We found research applying 12 of the 13 original constructs, with a new 
construct (heterogeneity) being added. The summary results of our investigation are presented in Ta-
ble 1, which includes counts and sample quotes. Based on our results, we conclude convergence has 
yet to occur. 

PROBLEMS WITH EXISTING TASK COMPLEXITY DEFINITIONS 
Lack of convergence is not alone in frustrating attempts to apply task complexity. Despite the con-
siderable effort that has been made to clarify the construct, there remain challenges that have yet to 
be fully addressed. We summarize some of them here. 

THE TASK STRUCTURE PARADOX 
Many of the most influential conceptualizations of task complexity (e.g., Hærem et al., 2015; Wood, 
1986) require that the acts, cues, and outputs of a task be well specified to determine task complexity. 
This works for highly structured tasks. It is not clear that these approaches can be applied to tasks 
that are very low in structure – such as writing a novel. There are also tasks that can be accomplished 
in a manner that is either low or high in structure. Consider, for example, the task of competing in 
the game Jeopardy™. When the player is a human, the problem space is largely unbounded; even the 
participants are unlikely to be able to specify what elements of their knowledge and experience will 
ever be applicable. When the player is IBM’s Watson™, in contrast, the problem space is necessarily 
fully structured since the task is performed algorithmically and the available resources are specified in 
advance.  

On the structured-unstructured continuum, low-structure tasks are typically characterized as com-
plex. Limiting task complexity to fully structured tasks would limit the application of task complexity 
to tasks that, by some definitions, are not very complex. 

AMBIGUITY WITH RESPECT TO WHAT CONSTITUTES A TASK 
Establishing the boundaries for a task has been a challenge for task complexity research since its out-
set (e.g., Wood, 1986). Hærem et al. (2015, p. 451) provided an invaluable service by expanding the 
scope of earlier research, which tended to focus on the individual (limiting its applicability in many 
contexts). Doing so, however, introduces ambiguity with respect to how a task differs from other 
definitions, such as those of an activity, a job, a project, and so forth. 
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Table 1. Constructs from T. G. Gill and Hicks (2006) 
identified in recent (2016-2022) research sample 

Construct (count) Example quote 
1. Degree of Difficulty 
(18) 

“Task complexity represents the level of ease and or difficulty with which em-
ployees fulfil their jobs.” (Ghani et al., 2019). 

2. Sum of JCI or JDS 
factors (1) 

“On the basis of JCM, we define customer task complexity as customer tasks 
that are rich in variety, identity, significance, autonomy, and feedback.” (Gong & 
Choi, 2016, pp. 1005-1006). 

3. Degree of 
stimulation (2) 

“Task complexity is defined as the level of stimulating and challenging demands 
related to a task.” (Jung et al., 2022, p. 2). 

4. Amount of work 
required to complete 
the task or information 
load associated with the 
task (3) 

“Indeed, a significant advantage of this task (and CSOPs in general) over tasks 
that are more commonly studied in group performance settings is that its com-
plexity can be quantified in terms of the run time required by an algorithmic 
solver to find the optimal solution, allowing us to easily rank task instances by 
complexity.” (Almaatouq et al., 2021). 

5. Amount of 
Knowledge (9) 

“Task complexity can be seen as a specific nature of a task that requires exten-
sive and diverse knowledge and skills to complete that task.” (Jung et al., 2020, p. 
3). 

6. Size & 13. Function 
of task characteristics 
(3) 

“Task complexity dimensions refer to task characteristics that may increase com-
plexity, such as the size of the task, the diversity/variety of tasks, the variability 
of the working conditions, the interdependence between task elements, the com-
plexity of physical manipulations, the information demands, and so on.” (An-
droulakis et al., 2023, p. 1550). 

7. Number of Paths (6) “As more paths mean more task complexity and fewer paths mean less task 
complexity, we can explain how task complexity is constructed as a social prac-
tice.” (Danner-Schröder & Ostermann, 2022, p. 438). 

8. Degree of task 
structure (3) 

“Ten definitional complexity dimensions are summarized, i.e., size, variety, ambi-
guity, relationship, variability, unreliability, novelty, incongruity, action complex-
ity, and temporal demand.” (Liu & Li, 2016, p. 11). 

9. Non-routineness or 
novelty of task (3) 

“Greater task complexity demands that the jobholder learn and use a variety of 
skills, which is more cognitively challenging than simply using a limited set of 
skills repeatedly without the need to learn new skills. Greater task complexity 
also demands that the jobholder complete the tasks from beginning to end, 
which is more cognitively challenging than working on one part of the task 
only.” (Zhang et al., 2017). 

10. Degree of 
Uncertainty (9) 

“Task complexity is an important determinant of performance in dynamic set-
tings because it leads to changes in task and situational demands and involves 
uncertainties and shifts in cues that can impact performance when not managed 
well.” (Pasarakonda et al., 2021, p. 921). 

11. Complexity of 
underlying system or 
environment (6) 

“By definition, such tasks are multifaceted and rather unpredictable, often com-
prising multiple subtasks that are interdependent and necessitate careful align-
ment.” (Oedzes et al., 2019, p. 314). 

12. Function of 
alternatives and 
attributes (12) 

“Task complexity can be defined as the amount of information related to a task 
an individual has to process when performing a task. Task is considered to be 
more complex if (1) there are multiple ways to complete it, or (2) has multiple 
desired outcomes, or (3) there are conflicting interdependence among paths, or 
(there are uncertain or probabilistic linkage among paths and outcomes).” 
(Yulianandra et al., 2017, p. 120). 

New: Heterogeneity (9) “From the structuralist perspective, task complexity is reflected by the structure 
of a task in terms of the number of task elements, the number of sub-tasks, and 
the variety or diversity of task elements, among others.” (Chen et al., 2022). 
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THE RELATIONSHIP BETWEEN TASK QUALITY AND TASK COMPLEXITY 
It has long been observed that increased task complexity can lead to higher error rates (e.g., Bronner, 
1994). Nevertheless, we were not able to find research specifically addressing the opposite relation-
ship: how changing expectations of task quality impact task complexity. 

Part of the problem may stem from how task complexity is operationalized. Hærem et al. (2015, p. 
457) rightly object to the fact that task complexity is frequently treated as a binary variable (i.e., high 
or low). The quality of task performance, however, is similarly likely to exist on a continuum. In an 
informing task, for example, it is quite possible that an outcome considerably less than “perfect” in-
forming (e.g., a condition in which the client’s understanding of a message being conveyed precisely 
mirrors the sender’s understanding) may still constitute acceptable task performance. 

Where a task allows for discretion, we would expect that high-quality performance would lead to the 
emergence of preferred approaches, whereas low-quality approaches would be avoided once discov-
ered – a feedback loop that potentially impacts current and future task performance and, accordingly, 
task complexity (however defined). Additionally, where discretion in performing the task is available, 
a performer may willingly trade off some performance quality to keep task complexity at manageable 
levels. Anyone who has ever had a large stack of student essays to grade in a short period of time has 
confronted that tradeoff. 

THE RESEARCH-PRACTICE COMMUNICATION BARRIER 
If we want our research to impact practice, it is important that our use of terminology be understand-
able to practitioners. Task complexity presents a challenge in this regard because, in practice, task 
performers widely perceive task complexity to be the same as task difficulty (Liu & Li, 2012, p. 559). 
We observed a similar relationship in Table 1, where the difficulty category of construct was the most 
common based on the count. If we insist on divorcing our definition of the construct from how 
practice understands it, we create a communications barrier. Understanding the challenges of com-
munications between different communities has long been a central research stream of informing sci-
ence (e.g., T. G. Gill, 2010). 

WHAT IS TASK COMPLEXITY GOOD FOR? 
A problem with task complexity definitions that has persisted since they were first introduced is the 
question of the purpose that the construct – however defined – serves. Hærem et al. (2015) discuss 
task complexity’s potential as both an independent variable (i.e., an input) and as a dependent varia-
ble (i.e., an output). Their model is vague; however, with respect to the former, what outcomes do we 
expect when task complexity is present? Most of the remaining attempts to define the construct con-
ceptually focus strictly on the relationship between inputs and resultant task complexity. Interestingly, 
the most concrete proposition for the impact of task complexity that we were able to find was in the 
conclusions of Wood (1986, p. 80), who asserts: “Together, these three types of task complexity de-
termine the total complexity of a task and the resulting knowledge and skills required of individuals for perfor-
mance of the task” [italics are ours]. 

When task complexity is employed in empirical research, the problem is the opposite. Because of the 
many alternative definitions of task complexity that have been proposed, researchers have a virtual 
buffet of variables that they can operationalize as “task complexity.” The potential threat to rigor 
presented by this “buffet” is that a researcher could keep trying different operationalizations of “task 
complexity” until finding one that satisfies desired tests. The subsequent challenge then becomes in-
terpreting what it means when they report that some variable, such as error rate, is a consequence of 
task complexity. 
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EXAMPLE: A TASK IN POPPER’S THREE WORLDS 
As previously discussed, ambiguity regarding how we view a “task” interferes with our understanding 
of task complexity. A considerable amount of this ambiguity can be resolved by introducing Popper’s 
(1972) “worlds.” We now present this scheme and consider how it could be operationalized, for ex-
ample, by performing a task like playing a piece on the piano.  

THE THREE WORLDS 
Under Popper’s (1972) conceptual scheme, a phenomenon can be considered from three perspec-
tives, which he refers to as worlds. The three worlds can be described as follows: 

• World 1 is the realm of the natural world. This is the world as it exists. It can be best ex-
plained by the studies of natural states and processes such as chemistry and physics. In the 
context of a task, we can view this in terms of the influences on the task that are external to 
how the task is defined and performed. These influences are processes and relationships that 
we do not necessarily understand and cannot necessarily predict – particularly when the 
many elements of the world interact – and that we cannot control. 

• World 2 is the realm of thoughts and feelings, including the cognitive experiences of humans 
and animals. In the context of a task, we can think of this world as taking place within the 
mind and can be treated as distinct from the symbolic processes that we employ from time 
to time, such as logical reasoning and mathematics. 

• World 3 is the realm of objects created by humans, viz., products of thought. These can 
range from technologies to scientific theories to art to man-made rules or laws. For our pur-
poses, we treat this world as the symbolic representation of the task. 

PLAYING THE PIANO IN THREE WORLDS 
To make these three worlds more concrete, we consider an example task: playing a piece of sheet 
music on the piano. From the perspective of World 3, the task is entirely described by the symbols 
on the sheet music and the attribute values of the characteristics that define the piano. To establish 
the complexity of the task, we would likely use input values such as the total number of notes, the 
average number of notes played simultaneously during each time interval, the variability of rhythms, 
the number and diversity of notations above the staff, and so forth. The insights of this analysis 
might help us predict the knowledge and capabilities required to perform the piece. Examining the 
sheet music might also serve as the basis for estimates of how long it will take to learn the piece from 
a particular starting point. It might even serve as a basis for predicting the likelihood of errors occur-
ring during a rendition of the piece. 

From the perspective of World 2 – what we experience – we previously noted how task complexity is 
treated as equivalent to difficulty according to some definitions. Depending on the performer’s expe-
rience, the task of learning a new piece can be perceived as being quite difficult. But this difficulty 
should decline over time – as anyone who has ever practiced an instrument (or repeatedly performed 
any routine task) can attest. It will also differ significantly across performers. 

The interpretation of task complexity from the perspective of World 1 is less straightforward. Like 
many art forms, piano playing consists of both technical proficiency (i.e., getting the notes and 
rhythm right) and artistic interpretation. While the former is largely a prerequisite for adequate task 
performance, the latter is what distinguishes the competent pianist from the true master. Ultimately, 
it is how the real world (i.e., World 1) reacts to the performer’s playing that will determine whether 
the approach taken to performing the task is reinforced – and, possibly, mimicked by other perform-
ers – or if the performer ultimately decides to find a new line of work. 

The challenge presented by World 1 is that for some tasks, such as solving an equation, there is a 
“right” answer, and we don’t necessarily care how the performer gets to it (assuming an acceptable 
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level of resources are expended). For other tasks, such as the previous concert pianist example, find-
ing the sweet spot that leads to exceptional task performance would certainly seem to be an aspect of 
the task that would contribute to its “real world” complexity. 

A THREE WORLDS APPROACH TO TASK COMPLEXITY 
With the previous example in mind, we now propose a general framework for viewing task complex-
ity structured according to Popper’s three worlds. This framework could be considered a hybrid of 
the frameworks proposed by Hærem et al. (2015, p. 451) and Liu and Li (2012, p. 564). Like the for-
mer, we advocate a single construct approach rather than the latter’s approach of separating task 
complexity into ten dimensions. On the other hand, to achieve relative consistency in how task com-
plexity behaves in different contexts, we operationalize task complexity differently in each of the 
three worlds. 

CHARACTERIZING A TASK 
How we define “task” has a significant impact on how we view task complexity. Hærem et al. (2015) 
advocate operationalizing tasks at different levels, from the individual level all the way up to a task 
that encompasses a broad mission (e.g., North Sea counterterrorism). We largely agree with this posi-
tion since each level (e.g., task, job, project, mission, strategy) can ultimately be decomposed into a 
set of available activities. 

We advocate a state-based approach to defining a task. Specifically, we characterize a task in terms of 
specifying the criteria for two sets of states: 

1. Initial states: The set of possible states from which task performance can be initiated. These 
criteria can be very limiting (e.g., the initial task states of “getting to work” might be limited 
to a specific individual driving from a particular home to a particular job on a particular day 
and time) or very broad (e.g., the set of initial states may include all possible instances that 
involve getting to work across all possible individuals and jobs). 

2. End states: The set of possible states that satisfy the criteria for completing the task or – for 
ongoing tasks that do not have a defined endpoint (e.g., the NSCT task described by Hærem 
et al., 2015) – continuing the task. 

The state-based approach offers considerable flexibility. For example, if we wanted a task to be per-
formed in a specific manner, we would exclude any end state that was not achieved through the in-
tended process. For our initial state, we might similarly exclude any performers who did not have the 
prerequisite knowledge to complete the task according to the required procedure. For example, if we 
wanted to assess the task complexity associated with solving a particular differential equation, we 
would normally limit ourselves to individuals who had been trained in solving differential equations. 
On the other hand, if the task were specified as learning to solve differential equations, we might well 
exclude any individuals who already had that knowledge. 

TASK COMPLEXITY AS A LATENT CONSTRUCT 
Among the concerns we expressed regarding the current state of the task complexity construct were 
i) lack of clarity regarding what the construct could be used for, ii) failure to accommodate tradeoffs 
between performance quality and task complexity, and iii) the communications barrier present when 
researchers define a construct in a manner significantly different from how it is used in practice. To 
address these concerns, we propose a common framework that applies to all three worlds of task 
complexity. The framework consists of six key elements: 

• Task complexity is proposed to be a latent construct whose level is driven by a collection of 
inputs (that vary by world) and whose presence and level result in a collection of outcomes. 
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• A familiarity-based construct, the form of which differs by world, moderating the input-com-
plexity relationship. This moderation can serve to suppress the impact of the inputs on task 
complexity and can also promote increases in the world’s complexity measure. 

• A discretion-based construct, differing by world, moderating the input-complexity relation-
ship. The construct can either suppress or amplify the impact of the inputs on task complex-
ity. An important influence on the direction of moderation is feedback from task outcomes; in 
this way, task performance can adapt to the quality of performance. 

The unifying framework is presented in Figure 1. 

 
Figure 1. Task complexity organizing framework 

WORLD 2: EXPERIENCED COMPLEXITY 
Of the three worlds of task complexity, experienced complexity is the world that has evolved least 
since its early days (e.g., Campbell, 1988). It is also well supported by research on cognitive processes, 
much of which is quite old – but has stood up well (e.g., Gobet et al., 2001; Miller, 1956; Schneider & 
Chein, 2003; Shiffrin & Dumais, 1981). 

To operationalize experienced complexity, we begin by identifying inputs that could affect task com-
plexity. Since the current paper’s objective is focused on rethinking how we frame task complexity 
(as opposed to identifying new factors impacting/impacted by task complexity), we rely mainly on an 
existing list of potential complexity sources: Liu and Li’s (2012) ten complexity dimensions. To adapt 
these to our framework, we need to reclassify some of the elements that will tend to decline with re-
peated performance of task instances: ambiguity and novelty. These are a better fit with the task fa-
miliarity construct. In addition, we chose to omit the “action complexity” dimension owing to its re-
cursive nature. 

For the experienced complexity-related outcomes, we propose difficulty, level of attention, uncer-
tainty, and error rate. As we noted earlier, in practice, difficulty is often viewed as synonymous with 
task complexity. We distinguish between the two by acknowledging that difficulty can have sources 
beyond task complexity, such as the physical demands of the task and distractions. Level of attention 
is intended to incorporate information processing perspectives on the construct (e.g., Schroder et al., 
1967), as task complexity is frequently viewed as a source of cognitive demand (Campbell, 1988). Un-
certainty is also perceived to be a consequence of task complexity by several researchers (Liu & Li, 
2012). Likewise, prior research has found a significant relationship between task complexity and error 
rates (e.g., Bronner, 1994). 

Under the familiarity construct, we include ambiguity, novelty, and routineness. The first two would 
negatively impact familiarity, while the routineness of the task would be positively associated with fa-
miliarity. The rationale for proposing that familiarity will reduce complexity is grounded in cognitive 
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science. As a task is performed repetitively, the concepts involved become more tightly related, a pro-
cess referred to as chunking (Miller, 1956), and procedures become increasingly compiled so they can 
occur automatically (Shiffrin & Dumais, 1981). Both these processes allow the task performer to 
overcome working memory and attention limits. 

The role discretion plays in the experienced task complexity model is particularly significant. One of 
the challenges confronting task complexity models – particularly those involving complexity as expe-
rienced by an individual task performer – is that different instances of a task often involve quite dif-
ferent activities. The result is that outcomes are inconsistent with straightforward models that, for 
example, predict that increasing the level of input variables to task complexity will lead to increased 
difficulty, information processing, etc. 

The challenge presented by discretion is well illustrated by early experimental research that used an 
alternative and attributes operationalization of task complexity (Payne, 1976). The researcher pro-
vided subjects with a problem based on choosing a rental apartment, manipulating both the number 
of attributes for each hypothetical apartment alternative and the number of apartments to be consid-
ered. Under a typical task complexity model, as alternatives and attributes grew, so would task com-
plexity and, consequently, complexity-driven outcomes. Instead of this straightforward relationship, 
experimental subjects altered their decision strategies as the number of alternatives and attributes 
grew. Specifically, subjects reduced cognitive demands by substituting techniques, such as elimination 
by attributes, for detailed apartment-by-apartment comparisons. Doing so allowed many apartments 
and attributes to be dismissed with minimal consideration. What allowed this phenomenon to take 
place was the level of discretion permitted in the experimental task. Similar findings emerged from 
subsequent research (e.g., Olshavsky, 1979). 

In the model we propose, the discretion feedback loop would activate changes to how the task is per-
formed based on expected experienced task outcomes (e.g., difficulty, attention required). For exam-
ple, if too much attention was being demanded, the loop might signal that shortcuts should be taken 
(as was the case in the experiment just described). Alternatively, if the error rate was too high or the 
uncertainty was too great, it could signal a need for a more rigorous approach to the task.  

The feedback loop could also influence the level of meta-task activities, such as testing activities in-
tended to improve the performer’s understanding of the task. For some tasks, these learning activities 
may be inseparable from the task itself. For example, a doctor may choose to look up medical re-
search articles in cases where a patient’s symptoms inadequately fit with the physician’s existing men-
tal models. Our contention is that such learning activities – even if not explicitly required by the task 
assignment itself – will necessarily impact the task’s experienced complexity. 

The experienced complexity model we propose is presented in Figure 2. Its applicability is best lim-
ited to individual instances of the task. Specifically: 

- It is quite possible that very different experienced complexity may result from different initial 
states. 

- How the task will be performed is dependent upon the performer’s existing knowledge and 
on any requirements (e.g., procedures) built into the task specification. 

- Because the model is based on cognitive principles, it is not clear that it will generalize be-
yond the individual to multi-actor situations. 

It is also noteworthy that the outcomes of experienced complexity are heavily influenced by the in-
puts of the task and its familiarity, especially its routineness. We anticipate that the cognitive limits of 
the individual will result in the application of discretion to alter or abandon the task should its end 
products (e.g., difficulty, attention) exceed a certain threshold. Thus, no matter how high the com-
plexity-producing potential of the task’s inputs, experienced complexity is likely to plateau at a certain 
level where the performer’s cognitive limits have been reached. 
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Figure 2. Experienced task complexity model 

WORLD 3: INTRINSIC COMPLEXITY 
Under World 3, we analyze a task’s complexity by looking at the task performance system, which 
drives the approach that will be employed to perform it. In doing so, we need to limit our considera-
tion of a task to those initial states and ending states that can be performed using the approach we 
are analyzing. In fact, we are not really analyzing the task itself. Rather we are analyzing the attributes 
of the system that determines how we will perform the task. Using the terminology adopted by T. G. 
Gill and Hicks (2006, p. 4), we refer to this system as the task’s problem space: 

Definition: A problem space is a representation of the cognitive system that will be used to per-
form a task: “described in terms of (1) a set of states of knowledge, (2) operators for changing 
one state into another, (3) constraints on applying operators, and (4) control knowledge for de-
ciding what knowledge to apply next” (Card et al., 1983, p. 87). 

In practice, assessing the task complexity in terms of a specific problem space is not a significant lim-
itation. On the contrary, nearly every approach to task complexity seeking to quantify task complex-
ity objectively assumes a particular approach to the task. Wood’s (1986) component and coordinative 
complexity depend upon a task organized in a particular way. Campbell’s (1988) paths presume the 
task has specific predetermined paths. Hærem et al.’s (2015) NSCT task assumes a particular ap-
proach and network. Naturally, different task instances will activate different areas of the problem 
space. For that reason, a problem space model is best applied to a collection of task instances and 
not a single instance. For many task instances, only a small portion of the problem space is likely to 
be activated. 

There are several reasons why a problem space approach to task complexity – which we refer to as 
intrinsic complexity – is worth defining. The first is illustrated by why we might choose to go to a pri-
mary care physician as opposed to a nurse practitioner when we feel the onset of a cold. It is quite 
likely that both will end up providing similar advice. Moreover, the doctor and nurse may well exhibit 
similar experienced task complexity in performing the task. Where they differ is in the depth and 
breadth of non-routine issues that we would expect them to be able to diagnose and treat. Stated an-
other way, the doctor – by virtue of education and experience – is likely to have a substantially ex-
panded problem space when compared to the nurse. Even though very little of that problem space is 
likely to be activated in our case, we may feel more comfortable knowing the breadth of diagnosis 
task instances that could be accommodated if needed. 

A second justification for defining intrinsic complexity is that it overcomes a significant limitation of 
experienced complexity. In the experienced model, changing a task by employing a tool – such as a 
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computer spreadsheet – can dramatically affect the performer’s experience. In the intrinsic complex-
ity model, the use of the spreadsheet to perform computations that were previously done manually 
would have little or no impact on the symbolic structure of the problem space or its intrinsic com-
plexity. Similarly, there is no conceptual barrier to representing a problem space symbolically that ex-
tends across multiple individuals and systems. Because it does not rely on the individual’s reaction to 
the task (as experienced complexity does), intrinsic complexity is much easier to apply at different 
levels. Even at the individual level – the domain of experienced complexity – intrinsic complexity can 
potentially be applied. For example, the task of an individual preparing income taxes using tax prepa-
ration software can be visualized as a problem space that incorporates both the knowledge of the 
task performer and that embedded in the software. Alternatively, we could look at the task strictly 
from the user’s perspective, limiting the problem space to the knowledge/rules/operators needed to 
operate the software and acquire its inputs (without necessarily having any detailed knowledge of the 
tax code). 

Another benefit of defining intrinsic complexity is that there is a large body of research that has in-
vestigated similar concepts in the world of information systems under headings such as software 
complexity, systems analysis and design, and software testing. A variety of techniques – such as func-
tion point complexity (e.g., Xia et al., 2008), cyclomatic complexity (Ebert et al., 2016), Kolmogorov 
complexity (Li & Vitanyi, 1993), and many others – could potentially be adapted to a problem space 
that extends beyond a single information system. 

Intrinsic complexity is not without its drawbacks. Although most of Liu and Li’s (2012) complexity 
dimensions seem best suited to experienced complexity, both Wood (1986) and Campbell (1988) 
provide characteristics that would seem likely contributors to intrinsic complexity: number of task 
components, number of acts that must be coordinated, multiple paths (which can either contribute to 
or reduce task complexity; Campbell, 1988, p. 43), multiple desired end states, conflicting interde-
pendence among paths, and uncertain or probabilistic linkages. Hærem et al. (2015) also provide a 
very rich example of how intrinsic complexity could be computed, its main limitation being that it is 
most readily applied to a network of communicating actors. That model would be much more diffi-
cult to adapt to tasks where most of the processing takes place within the minds of individuals. 

Proposing the expected outcomes of intrinsic complexity is significantly more challenging. Because a 
problem space can apply to a broad range of tasks – some requiring minimal information processing, 
some requiring much greater effort – the types of outcomes associated with the instance-specific ex-
perienced complexity construct are unlikely to generalize. Because many of the proposed inputs will 
impact how large a complete description of the problem space would be (an analog to Kolmogorov 
complexity), we feel confident in predicting that intrinsic complexity could impact the time it takes to 
learn the task (or implement the problem space as an information system). As proposed in Wood’s 
(1986) earlier-mentioned conclusions, it could also predict the prerequisite knowledge and skills of 
the individuals who would perform the task. Drawing upon software complexity findings, it could 
also be predictive of the number of flaws in the problem space that could produce undesired out-
comes (e.g., bugs in a system). 

Assessing the role played by familiarity factors within intrinsic complexity raises several issues. 
Whereas experienced complexity tends to decline predictably with repetitions, we would expect some 
learning to occur as different task instances are handled by the problem space. In consequence, ab-
sent a significant restructuring of the problem space, we would expect that intrinsic complexity could 
grow incrementally with the task's continuing performance across various instances.  

The greatest familiarity challenge comes from task structure, sometimes identified as a source of 
complexity (Liu & Li, 2012). We define structure in terms of our problem space. For a fully struc-
tured task, every task instance contained in our initial set can be completed within the boundaries of 
the problem space defined for the task. In an entirely unstructured task, none of the instances in our 
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initial state set can be fully handled using a predefined problem space. Between the two extremes ex-
ists a continuum where some of the initial instances can be accomplished within the boundaries of 
the problem space, some can be partially completed, and some cannot be addressed. High-structure 
tasks will be those where most instances can be handled within problem space; low-structure tasks 
would frequently require task activities beyond the defined problem space boundaries.  

Just because a task cannot be completed within its well-defined problem space does not mean the 
task cannot be accomplished. Rather, we must accept that for low-structure tasks – such as writing a 
novel – we won’t be able to determine intrinsic complexity with any accuracy. We simply cannot 
identify all the resources and activities that our set of initial task instances will require in advance. 
Moreover, if we were to try to guess at intrinsic complexity, the value would likely be quite large. For 
example, almost everything an individual has experienced, knows, or believes could potentially con-
tribute to the aforementioned novel. Of course, our estimate would also vary considerably across 
performers; we all differ substantially in what we have experienced, know, and believe. Nevertheless, 
the need for knowledge/capabilities outside of the structured problem space would necessarily add to 
the intrinsic complexity computed for the problem space itself. Thus, the perspective that lack of 
structure contributes to task complexity is consistent with our model. We would also usually expect 
structure to increase (i.e., lack of structure decrease) with repeated performance of diverse task in-
stances, potentially reducing intrinsic complexity until the point where the task is fully structured. 

 
Figure 3. Intrinsic task complexity model 

The model proposed for intrinsic complexity is presented in Figure 3. Whereas our experienced com-
plexity model was best evaluated for a single instance from the task’s initial set, the intrinsic complex-
ity value is largely determined by the elements of the process through which the task runs from the 
initial state to the end state. We need to know the problem space in advance to compute it. 

Intrinsic complexity is applicable to all the tasks that can be completed using the same problem 
space. It has an important limitation, however. Where two entities (e.g., individuals, teams, organiza-
tions, etc.) apply different problem spaces to the same task, there is no reason to believe that the in-
trinsic complexity for one entity will be the same as it would be for the other. 

WORLD 1: EXTRINSIC COMPLEXITY 
The final world of task complexity captures how the task interacts with the external environment. As 
we noted earlier, the existing task complexity literature has paid scant attention to how the quality of 
task outcomes impacts the task’s complexity (although it has considered the impact of complexity on 
quality). For some tasks, the impact is likely to be minimal; for others, it may represent the principal 
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source of the task’s complexity (however we choose to define it). To illustrate, consider two tasks 
that might appear superficially similar: painting a scene by numbers and painting a scene on a blank 
canvas. Although the physical activities in both tasks are going to appear similar (i.e., mixing paints to 
get a desired color, applying the paint to canvas), the latter task will entail indeterminant intrinsic 
complexity (owing to its low structure). For our purposes here, however, the most striking difference 
between the tasks is how the task end products are likely to be valued. We may reasonably predict 
that the paint-by-numbers scene will have negligible monetary value and might earn a place on the 
painter’s bedroom wall (provided the painter is a pre-teen). The original scene, in contrast, could po-
tentially have a huge variation in value, ranging from the negative (i.e., what it costs to dispose of the 
spent canvas) to a price at auction of over $100 million. What is particularly interesting about this 
range is how difficult it is to make an accurate estimate when the only artifact available is the task 
product itself (as opposed to knowing who the artist is and what similar pieces have sold for). 

As the painting example suggests, for many tasks, the quality of task outcomes can be quite im-
portant in assessing task performance. For some tasks (e.g., paint by numbers), the determination is 
relatively straightforward. For others (e.g., original landscape), the highly subjective nature of the as-
sessment makes accurate determination nearly impossible. Because the value of the output is largely 
driven by real-world forces external to the task itself, we refer to this source of complexity as extrinsic 
complexity. 

None of the reviews we examined explicitly addressed extrinsic complexity as we have characterized 
it. There is, however, a substantial literature drawn from evolutionary biology (e.g., Kauffman, 1993) 
that has also been applied to the management task of strategy determination (e.g., Levinthal, 1997; 
Levinthal & Warglien, 1999). In this approach, an entity’s state – end-state, for our purposes – is de-
scribed with a series of attributes. Each possible state is associated with a quality-related value re-
ferred to as fitness. The complete set of mappings between state and fitness is referred to as a fitness 
landscape. The nature of the relationship between attributes and fitness determines the shape of the 
landscape. In a fully decomposable (i.e., low complexity) landscape, fitness is determined by a simple 
sum of the relative contribution to fitness of each attribute – analogous to how each question con-
tributes to the overall score on a multiple-choice test. The result produces a landscape with a single 
fitness peak. In a maximally complex landscape, fitness is determined by each unique combination of 
attributes, and many local peaks likely exist. In the landscape of published fiction, the combination of 
individual words in each novel can be viewed as its author’s attempt to achieve an individual peak. 

To illustrate the difference in complexity associated with the two landscape extremes, consider how 
much information a task performer would need to discover the “optimal” output for a task with 20 
attributes that can each be 0 or 1. For the fully decomposable landscape, we would need to know 20 
values – the marginal contribution to the fitness of each attribute. For the maximally complex case, in 
contrast, there are over a million (220) possible unique combinations, each of which would have to be 
examined. Naturally, we would expect most real-world landscapes to exist on a continuum between 
the two extremes. Kauffman (1993) proposed a tunable model – the NK-landscape – that can be 
used to simulate different levels of complexity. 

Given its biological origins, it is not surprising that the fitness variable is driven by two factors: the 
entity’s ability to survive and the entity’s ability to reproduce. We can adapt these to the context of 
the fitness of a particular problem space for a task instance. In this context, a high fitness value 
would encourage continued application of the same problem space for similar task instances (sur-
vival). The approach might also be copied by others seeking to improve their own outcomes or ex-
tended to other task sets (reproduction). Alternatively, a low fitness value might lead the performer 
to search for another problem space. 

Extrinsic complexity presents static and dynamic challenges. The principal sources of static extrinsic 
complexity are the number of attributes that contribute to the fitness of the task’s end state and the 
number and strength of interactions associated with the fitness relationship (roughly corresponding 
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to N and K, respectively, in the NK-landscape model). Both contribute to the complexity of the 
landscape, although the K value is particularly important in practical terms. This complexity mani-
fests itself in the presence of many local fitness peaks. These peaks can have the effect of terminating 
an entity’s incremental search processes even if a given peak has a significantly lower fitness value 
than that of other attainable peaks. What makes this particularly problematic is the empirically ob-
served tendency of complex landscapes to exhibit power law distributions in outcomes (Taleb, 2007). 
The practical implication of this is that as the landscape becomes more extrinsically complex, the po-
tential cost of missing high-value combinations can be very high. Moreover, even seemingly minor 
changes can have a large impact on fitness. For example, the huge differences in the value placed on 
different violins cannot be explained entirely based on sound quality (e.g., Fritz et al., 2017). 

The dynamic element of extrinsic complexity is driven by changes to the fitness landscape. These 
changes can result from entities repositioning themselves on the landscape (e.g., the emergence of a 
new category of literature that attracts many new authors). Related to that is the rate at which entities 
can adapt. For example, environments that require large long-term investments (e.g., the power in-
dustry) may exhibit more stable fitness landscapes than those that can change quickly (e.g., software 
apps). Dynamic fitness landscapes can also result from interactions with co-evolving systems. For ex-
ample, advances in AI may lead to new art forms enabled by the technology that, in turn, spurs fur-
ther technological advances aimed at supporting the growing needs of digital artists. 

Broadly speaking, landscape ruggedness is likely to be pronounced in what is also referred to as 
“high-velocity environments” (Bourgeois & Eisenhardt, 1988), described as follows: 

… those in which there is rapid and discontinuous change in demand, competitors, technology 
and/or regulation, such that information is often inaccurate, unavailable, or obsolete (p. 816). 

Such landscapes make it very difficult to find the sweet spot for task outcomes, particularly using an-
alytical means. Such landscapes are argued to be particularly susceptible to herding behavior, referred 
to as homophily (e.g., T. G. Gill, 2012). Conceptually, this translates to identifying a high-fitness en-
tity and then attempting to replicate, as closely as possible, its attribute values. For example, the film 
industry exhibits all the characteristics of a very rugged landscape, particularly with respect to its large 
distributions of outcomes and the difficulty of predicting whether a novel film will pay back its in-
vestment. One way the huge investment risk can be reduced is to produce films that are as similar as 
possible to films that are already proven to be successful. Thus, we see the emergence of sequels, 
franchises, and film “universes.” 

With respect to the familiarity-related constructs in the model, the impact is limited. Because extrinsic 
complexity deals with complexity related to the external environment, the ability of an individual 
task-performing entity to impact complexity is limited. Nevertheless, being able to observe the be-
havior and fitness of other task performers could have some impact. For example, observability has 
been found to increase the rate of adoption of innovations (Rogers, 2003, p. 222). Conceptually, 
where the fitness of other tasks is readily observable, a performer’s willingness to consider changing 
peaks is likely to be higher. Particularly in a competitive landscape, we might expect that entities re-
distributing themselves will impact the broader state-fitness relationships (e.g., as certain states be-
come crowded). The effect of distribution on the landscape is predicted to be particularly pro-
nounced in environments where network effects are present (T. G. Gill, 2012, p. 76), meaning that 
fitness grows as more entities occupy a particular region of the landscape. 

The presence of discretion is unlikely to exert much impact on extrinsic complexity because the indi-
vidual task performer is likely to have little influence on the fitness landscape. Discretion could, how-
ever, have a significant impact on task priorities. Because the relationship between a task end state 
and its corresponding fitness becomes nearly impossible to assess analytically under high extrinsic 
complexity, the entity must experiment to assess possible changes to end state attributes. Such exper-
imentation can occur in two directions. It can occur adjacent to the entity’s current state; this process 
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will ultimately lead to discovering a local fitness peak. Alternatively, the entity can observe other enti-
ties performing the task and imitate them. This may involve changing multiple attributes simultane-
ously, effectively attempting a jump across the landscape to another perceived fitness peak. Both 
strategies seem less risky than a jump to an unexplored region. The choice between incremental ex-
perimentation and taking a large jump strongly parallels the issues related to choosing a balance be-
tween exploitation and exploration (e.g., Gupta et al., 2006). 

 
Figure 4. Extrinsic complexity model 

The extrinsic complexity model is presented in Figure 4. It differs from the other models in that it 
places very few restrictions on how tasks are defined or performed. Indeed, to understand the under-
lying landscape, it is beneficial to include as many different approaches (e.g., possible problem 
spaces) as possible. It is also the model that affords the least ability to influence the task complexity 
construct. Rather, the purpose of the model is to allow the performer to better understand the rela-
tionship between task performance and task outcomes, along with dynamics likely to be experienced 
over the course of performing the task. 

SUMMARY TABLE 
Table 2 summarizes and contrasts the three worlds of task complexity. 

 Table 2. Summary of three worlds of task complexity 

Characteristic Experienced Intrinsic Extrinsic 
Task domain 
considered 

Individual task 
instance and human 
performer 

All task instances per-
formed using a specific 
problem space 

All task instances 

Principal focus Task inputs Task processes Task outcomes 
Inputs Characteristics of the 

specific task instance 
Characteristics of the 
problem space 

Characteristics of the environment 
of the task 

Outcomes Difficulty, Attention, 
Uncertainty, Error 
rate 

Time to learn or imple-
ment; Minimum required 
capabilities; Error rate 

Environment characteristics: 
Discontinuous change; Sensitivity 
to small change; Large range of 
outcome values; Herding 

Effect of 
repeated 
performance 

Reduces complexity 
substantially 

Most likely to increase 
complexity incrementally 

Complexity is largely unaffected 

Application of 
task discretion 

Manage cognitive 
demands and enhance 
performance 

Modify problem space to 
improve performance and 
increase structure 

Balance exploitation and 
exploration 
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DISCUSSION 
We now consider three specific questions raised by the framework we have proposed: (1) How do 
the different worlds of task complexity relate to each other? (2) What are the implications of the pro-
posed framework for researchers? (3) What are the implications of the proposed framework for prac-
tice? 

RELATIONSHIP BETWEEN TASK COMPLEXITY WORLDS 
Although task complexity itself is described differently in each of the three worlds, that does not 
mean that the worlds are unrelated. Based on our analysis, however, the relationships are not neces-
sarily straightforward.  

Intrinsic x experienced 
It would be easy to propose that high intrinsic complexity should lead to similarly high experienced 
complexity. Arguments for such a relationship would be based on the expectation that high intrinsic 
complexity problem spaces are likely to include many control processes (e.g., rules, branches); such 
processes tend to resist becoming automatic (Shiffrin & Dumais, 1981) over time and would there-
fore be expected to place high cognitive demands on the performer. Unfortunately, this relationship 
will be violated frequently for two reasons already mentioned: 

1. Individuals have bounded working memory and attention. Regardless of the intrinsic complexity value, 
experienced complexity – as we have defined it here – will tend to be limited to a certain level 
for a particular individual. 

2. A problem space can extend across multiple actors, including non-human actors. For example, in our pre-
vious scenario of individuals adopting tax preparation software, the complexity experienced 
by the performers in preparing their taxes may decline, while the size of the task problem 
space may grow owing to rules and knowledge embedded in the software. 

Perhaps the most interesting linkage between experienced and intrinsic complexity involves the pre-
viously mentioned task structure. The lack of structure can be expected to increase complexity in 
both worlds and similarly, the value is expected to decline in both cases as more instances of the task 
are performed. Here, however, the impact may be dissimilar. The increasing structure should lead to 
declines in experienced complexity; for intrinsic complexity, it would move the construct from being 
largely indeterminant for the task to one that better reflects the full range of task instances. 

Intrinsic x extrinsic 
Extrinsic complexity, being largely a function of the environment, will be difficult for an individual 
performer to impact. In contrast, the characteristics of high extrinsic task environments – multiple 
fitness peaks, power law distributions of outcomes, discontinuities in behavior, herding behaviors – 
will demand the performer maintain resources that support adaptation if it is to survive (i.e., exhibit 
acceptable fitness). These characteristics would increase intrinsic complexity by requiring that meta-
task activities – such as research, learning, experimentation, and observation of other performers – be 
incorporated into the problem space. As noted earlier, such activities could support either explora-
tion or exploitation, as well as the balance between the two. 

Extrinsic x experienced 
As was the case for intrinsic complexity, the relationship between extrinsic and experienced complex-
ity is posited to flow mainly from the former to the latter. The ruggedness and velocity of the task 
environment should exhibit a particularly strong impact on the novelty and ambiguity of the typical 
task instances encountered, as well as potentially impacting nearly all the other task inputs. This im-
pact may affect the variety of task instances that a typical performer encounters, affecting the average 
of experienced complexity across instances. In balance, we would expect growth in extrinsic com-
plexity to lead to higher experienced complexity (once again, governed by cognitive limits). 
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Figure 5. The IT-driven complexity cycle (T. R. Gill & Gill, 2024, p. 9) 

Experienced x intrinsic x extrinsic 
It has recently been proposed that the three worlds of task complexity might, in the presence of IT, 
interact to form a cycle (T. R. Gill & Gill, 2024). The nature of the proposed cycle, illustrated in Fig-
ure 5, applies when IT is used to alleviate uncomfortably high experienced complexity. The transfer 
of task activities to IT results in changes to the problem space that generally leads to increased intrin-
sic complexity. These changes can also lead to increasing numbers of connected system elements, 
density of connections, and reaction speeds – all common consequences of IT adoption in a con-
nected world. These changes to the task system (and co-evolving systems), in turn, change the behav-
ior of the external environment – tending to increase extrinsic complexity. As a result, we may expect 
to see the system behaviors typically associated with extrinsic complexity (e.g., punctuated equilib-
rium, power law variations in system behavior and fitness, turbulence) increasing in magnitude and 
frequency. These behaviors, in turn, are likely to increase the experienced complexity of the task per-
formers, who are then motivated to enlist the aid of additional IT. And the cycle continues. 

IMPLICATIONS FOR RESEARCHERS 
There are several potential implications of our framework for researchers seeking to investigate task 
complexity. First, each of the three world models of task complexity could be translated into propo-
sitions relating complexity inputs to complexity outcomes. While we concede that many of these 
would require considerable thought to operationalize, we think they still represent a step forward 
from much of the conceptual research that proposes a task complexity construct but is vague with 
respect to what predicted outcomes the presence of task complexity (however it is defined) lead to. 

We also believe that existing research has largely ignored how familiarity, discretion, and meta-activi-
ties, such as learning, interact with task complexity. We have argued that these are critical to under-
standing task complexity dynamics in all three worlds. We have also proposed that they can be incor-
porated into a model as moderating constructs between task inputs and their resulting task complex-
ity. 
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Finally, by incorporating the extrinsic complexity construct into our framework, we offer a path to-
ward investigating real-world impacts on task complexity. As implied earlier in our “task structure 
paradox,” one barrier to existing task complexity research may be that the set of fully specified tasks 
for which task complexity can be rigorously studied is likely to consist of relatively simple tasks (how-
ever we choose to define “simple”) compared to those that are driven by dynamic environments. The 
study of extrinsic complexity offers an alternative conceptual scheme that researchers could apply. 

IMPLICATIONS FOR PRACTICE 
We admit up front that in proposing how an abstract conceptual framework is likely to impact prac-
tice, researchers are afforded the rare opportunity to engage in writing fiction. In that spirit, rather 
than offer up a series of abstract domains where the three worlds of task complexity might be appli-
cable to practice, we walk through a single informing task likely to be familiar to many readers: deter-
mining how credit is allocated between co-authors of a paper. This task was inspired by the (ludi-
crous) requirement (at the authors’ institution) that faculty going up for promotion and tenure spec-
ify their estimated contribution in percentage terms for each article they co-authored. 

To set up our hypothetical example, let us imagine that an article was the result of a collaboration be-
tween a doctoral student, a major professor, and a senior professor. The article was created in the fol-
lowing manner: 

1. The major professor comes up with an interesting research question emerging out of her re-
search stream over the past decade.  

2. The major professor presents it to her doctoral student, along with a list of about a dozen 
articles that she believes are relevant. The student studies these articles and agrees to partici-
pate in the research. 

3. Under the major professor’s direction, the doctoral student performs a literature search and 
drafts the background and method sections of the paper. The major professor revises these 
significantly. 

4. Under the major professor’s guidance, the doctoral student develops and administers a sur-
vey. The two work together to perform the statistical analysis of the data and write the re-
sults section. The doctoral student drafts the discussion and conclusions sections, which are 
then significantly rewritten by the major professor. 

5. Recognizing that the research has significant potential, the major professor enlists the aid of 
a senior professor who has published extensively and has previously served as a senior editor 
at the premier journal that they have targeted for the submission. The senior professor 
makes significant changes to the paper’s tone and reorganizes some of the discussion but 
leaves the results largely untouched. 

6. The paper is submitted to the targeted journal and receives a revise and resubmit. All three 
work together on the first and subsequent revision, after which the paper is accepted. 

The question we now pose is: “What is the percentage of contribution from each co-author?” Or, 
more simply, “Who should be the lead author?” 

If we were to address this question in terms of task complexity, each world could easily lead us to a 
different answer. If we were to allocate credit based on experienced complexity, the doctoral student 
would be allocated the lion’s share of the credit based on (2), (3), and (4). In contrast, considered 
from the perspective of intrinsic complexity, items (1), (2), (3), and (4) imply that the major’s profes-
sor’s command of the topic area is largely responsible for most of the shared problem space.  

Under an extrinsic complexity perspective, the analysis gets trickier. At most institutions, lists of jour-
nals – such as the UTD 24 and Australian Business Dean’s list – are used to evaluate the so-called 
quality of articles. At such institutions, the career impact of publishing in a “premier” journal versus a 
journal that is merely well respected can be huge. Consequently, premier journals tend to have very 
low acceptance rates – often under 5%. Studies of reviewer ratings done in premier journals (e.g., 
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Starbuck, 2003, 2005) have also demonstrated that consensus between reviewers is not particularly 
high. Based on these observations, for the purposes of our example, we will assume that the proven 
ability to navigate the peer review process and move a manuscript to acceptance and publication is an 
exceptionally valuable (and rare) skill. In many ways, it is analogous to the unique talent that distin-
guishes the previously described concert pianist from the talented amateur. Moreover, in high extrin-
sic complexity environments, even small changes in task performance can produce dramatic changes 
in fitness owing to their participation in interactions. Our conclusion: if the individual’s contribution 
to the fitness of the task is critical, the senior professor’s role in the process might be judged as the 
most significant. 

Although the paper authorship example was formulated based on the likely readership for this article, 
the approach described could be generalized to how recognition/rewards are assigned to many types 
of tasks. For tasks where intrinsic and extrinsic complexity are low, experienced complexity would be 
the key driver. Direct productivity measures, which would be expected to grow as tasks become 
more automatic with practice, could then be rewarded. For tasks where intrinsic complexity is high 
and extrinsic complexity is low, task knowledge is key. In consequence, measures that reflect the 
likely size of the individual’s task problem space – such as relevant graduate degrees and seniority – 
might warrant additional compensation. Where the task’s extrinsic complexity is high, indicators such 
as the individual’s track record with similarly complex tasks, creativity, and adaptability might be the 
best predictors of high fitness performance (and most appropriate for rewarding/recognizing). 

LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH 
Any research that attempts to synthesize and rearrange a large body of research is subject to obvious 
limitations. In assembling the three-world model, we made some assumptions that will doubtless 
prove – in retrospect – to be ill-advised. Rather than dwell on these, we now turn to some of the 
concerns we feel are most significant and, therefore, most likely to benefit from future research. 

Chief among these is whether it makes sense to look for a single complexity construct, as Hærem et 
al. (2015) advocated, or to establish a series of separate complexity dimensions, as Liu and Li (2012) 
chose to do. Our perspective is that since complexity is often a consequence of interactions, each 
time we break a construct into separate components/dimensions, we run the risk of creating separate 
variables whose values do not, on their own, tell us very much; only in combination with other varia-
bles do they exert impact – the very source of extrinsic complexity. Nevertheless, we felt the need to 
define three worlds because the complexity behaviors were so different (e.g., as shown in Table 2). 
However, within each world, a single complexity construct would be preferable. In the future, how-
ever, empirical research might indicate that different combinations of inputs are required to better 
predict different aspects of task outcomes (e.g., time to learn vs. error rate) as opposed to capturing 
them all with a single complexity construct. In that case, it might make sense to establish different 
flavors of task complexity within each world tuned to different complexity outcomes. 

A further limitation of our research is that we cannot assert, with complete confidence, that the latent 
task complexity constructs in each of the three worlds is a “real thing,” as opposed to being merely a 
shorthand way of naming the relationship between each world’s inputs and outputs. If subsequent 
research were to operationalize the inputs and outputs of a world’s task model, we might be able to 
make the case for latency statistically using techniques such as structural equation modeling. But we 
are a long way from being able to accomplish that. Moreover, some of the constructs we have incor-
porated – particularly discretion and familiarity – are proposed to operate in qualitative ways, such as 
influencing path selection and directing performer resources toward learning. Additional theory de-
velopment would be needed to accommodate these in a manner suitable for formal hypothesis test-
ing. 
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CONCLUSIONS 
Our hope is that the proposed three-world framework will assist both research and practice in mak-
ing sense of task complexity. In constructing the framework, we drew heavily on past research. Our 
“experienced complexity” world is nearly identical to Campbell’s (1988); our intrinsic complexity is a 
refinement of the objective complexity variations proposed by Wood (1986), Campbell (1988), T. G. 
Gill and Hicks (2006), and Hærem et al. (2015). While our treatment of extrinsic complexity is quite 
novel in the task space, it has strong roots in the treatment of complexity in other domains (e.g., T. 
G. Gill, 2012; Kauffman, 1993; Levinthal, 1997). 

Despite these similarities, we have introduced some clarifications and enhancements that we believe 
are quite beneficial to understanding task complexity. In particular, the use of a common framework 
to model complexity in each world is novel, as is our treatment of familiarity and discretion – both of 
which have the potential to address ambiguities in past complexity research. 

We fully agree with Hærem et al.’s (2015, p. 447) contention that task complexity is becoming “an 
increasingly relevant construct.” But until our mutual understanding of the basic nature of the con-
struct converges – which it has yet to do – researchers will have difficulty investigating task complex-
ity, and practice will be challenged in putting it to use. Our hope is that the present research will help 
both communities move forward. 
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