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ABSTRACT   
Aim/Purpose A new predictive model for disease outbreak prediction is to be developed us-

ing Temporal Graph Convolutional Networks (TGCNs). 

Background The emergence and spread of contagious diseases seriously threaten public 
health systems worldwide. Early diagnosis and disease outbreak prediction are 
necessary to implement quick solutions and reduce their impacts. Present meth-
ods often overlook the complex connections between many factors influencing 
disease transmission, such as population dynamics, temporal trends, and spatial 
proximity. To overcome these limitations, we introduce TGCNs as a novel par-
adigm for disease outbreak prediction.   

Methodology Temporal convolutional and graph neural networks are coupled in TGCN mod-
els to reflect spatiotemporal dependencies in disease spread. The degree of in-
teraction between different locations is shown by edges in a graph, and this spa-
tial relationship forms the foundation of the graph structure. Using this pro-
posed method, temporal convolutional layers, and graph convolutional layers, 
TGCNs learn temporal patterns in disease incidence data and geographical rep-
resentations of nodes. 

Contribution The main research problem in this research is to tackle and develop a prediction 
model that can accurately predict disease outbreaks based on diverse data 
sources, which mainly focus on the application of temporal surveillance data 
and geographical relationship information. In this research work, the objective 
is to describe the dynamics and underlying structure of disease transmission net-
works throughout time and to harness the capabilities of graph convolutional 
networks (GCN), which precisely forecast and focus on future outbreak epi-
sodes. 

Findings The TGCNs outperformed state-of-the-art methods for disease outbreak pre-
diction using the disease surveillance datasets. Through the effective application 
of both temporal and spatial information strategies, TGCNs show strong per-
formance across various disease types and geographical areas, which helps to 
achieve better results and accuracy on an enhanced proposed method. 

Recommendations  
for Researchers  

 Investigations should prioritize the validation of the algorithm in various 
healthcare environments to assess its efficacy in clinical application.   

Future Research In future research, this work can be enhanced using several deep learning algo-
rithms to achieve better accuracy and performance. 

Keywords disease, public health, temporal graph convolutional networks, spatiotemporal 
dynamics, prediction 

INTRODUCTION 
Predicting and monitoring disease epidemics are top priorities in public health. In terms of and focus 
on current industry 4.0 growth and global economic factors, we need to adopt several AI technolo-
gies in terms of protecting and controlling the spread of infectious diseases (L. Wang et al., 2022). It 
is difficult work to make accurate predictions, nevertheless, because of the complex connections be-
tween many factors influencing disease transmission dynamics (Yu et al., 2023). The intricacy of 
these relationships makes it challenging for conventional surveillance methods to capture them, lead-
ing to suboptimal forecast performance.  
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BACKGROUND 
Infectious diseases still endanger public health worldwide, and epidemics cause high rates of morbid-
ity, mortality, and financial expense. Historically, the manual interpretation of disease incidence data 
and the passive reporting employed by surveillance systems have hindered the discovery of epidem-
ics. Even though recent advancements in data collection technology have made large-scale spatiotem-
poral datasets easier to produce, it is still extremely challenging to extract meaningful insights from 
these data (Fritz et al., 2022). 

CHALLENGES 
Considering the complex dynamics of disease spread along both temporal and spatial dimensions is 
one of the several challenges in disease outbreak forecasting (Siji Rani et al., 2023). Precise forecast-
ing is challenging because disease transmission networks are dynamic and comprise components in-
cluding population movements, environmental conditions, and pathogen change. Standard modeling 
techniques also often fail to adapt to shifting epidemiological patterns and disregard the variety of 
transmission routes (Ma et al., 2022). 

PROBLEM DEFINITION 
The main research problem in this research is to tackle and develop a prediction model that can accu-
rately predict disease outbreaks based on diverse data sources, which mainly focus on the application 
of temporal surveillance data and geographical relationship information. In this research work, we 
aim to overcome the issues and challenges in the existing research work and emulate the spatiotem-
poral dynamics of disease transmission networks. Our main goal is to focus on and improve the pre-
diction abilities of surveillance systems, which help to provide quick responses and reactions to re-
duce the impact of infectious diseases. 

OBJECTIVES 
The major objectives of our investigation are summed up as follows: 

1. One new predictive model for disease outbreak prediction is to be developed using Tem-
poral Graph Convolutional Networks (TGCNs). 

2. The rich spatiotemporal information found in disease surveillance data is used to derive the 
basic dynamics of disease transmission networks. 

3. To evaluate and compare the proposed model with state-of-the-art methods on real surveil-
lance datasets. 

NOVELTY AND CONTRIBUTIONS 
Temporal modeling techniques with graph convolutional networks to represent the complex interde-
pendencies of disease transmission dynamics are achieved. Temporal patterns in disease incidence 
data and detailed descriptions of the spatial connectivity between locations enable disease outbreak 
prediction. We have contributed a new predictive model, evaluated its performance on several da-
tasets, and comprehended its practical applications in public health monitoring and response actions. 
Our work advances the state of the art in predicting disease outbreaks and supports ongoing initia-
tives to strengthen global health security. 

SCOPE 
The research focuses specifically on predicting disease outbreaks for infectious diseases with signifi-
cant public health implications, such as influenza, dengue fever, and other contagious viral diseases. 
The study emphasizes leveraging temporal surveillance data and spatial relationships to model and 
forecast outbreaks in urban and densely populated regions where accurate and timely predictions can 
have the most significant impact. 



Temporal Graph Convolutional Networks  

4 

LIMITATIONS 
1. The predictive model is primarily validated using datasets from specific geographical regions, lim-

iting its generalizability to regions with similar demographic, environmental, and healthcare infra-
structure characteristics. 

2. The accuracy of the model depends on the quality and completeness of the data. Limited access 
to high-resolution spatiotemporal data or missing data from underdeveloped regions may affect 
performance. 

3. The study focuses on structured data sources such as government surveillance reports, population 
movement data, and climate datasets. Unstructured or real-time data sources like social media 
trends are not considered. 

4. The model is designed to handle infectious diseases with relatively well-understood transmission 
dynamics and may be less effective for emerging or poorly understood diseases with complex or 
unknown transmission pathways. 

RELATED WORKS 
Many approaches have been made to address the critical role of disease outbreak prediction in public 
health surveillance. In this section, we review pertinent research on several aspects of disease out-
break prediction and cover machine-learning techniques, traditional statistical approaches, and cur-
rent advances in spatiotemporal modeling (Du et al., 2021). 

Time series analysis and autoregressive models were the main statistical models utilized in early dis-
ease outbreak prediction techniques (Y. Wang et al., 2022). Usually, based on seasonal and temporal 
trends, these methods use historical surveillance data to predict the occurrence of diseases in the fu-
ture. Conventional statistical models, although simple and intuitive, sometimes struggle to capture the 
complex dynamics of networks of disease transmission and might not account for non-linear interac-
tions or spatial dependencies (Oliveira et al., 2022). 

As machine learning techniques have developed, interest in using computer models to improve dis-
ease outbreak prediction has grown. Support vector machines (SVM), random forests, and neural 
networks have been applied to processing surveillance data and discovering characteristics predictive 
of disease outbreaks (Li et al., 2022). Many data sources can be integrated, and complex connections 
between variables can be investigated thanks to scalable and flexible machine-learning techniques. 
Still, issues with class imbalance, handling high-dimensional data and ensuring the interpretability of 
models exist (La Gatta et al., 2021). 

Recently, advances in spatiotemporal modeling have led to the development of sophisticated frame-
works for disease epidemic prediction. Particularly, graph-based techniques are being utilized more 
and more to track the spread of infectious diseases and mimic the spatial connectivity between geo-
graphical locations (Song et al., 2023). Complex networks of disease transmission have been mod-
eled, and future epidemic events are predicted based on temporal dynamics and spatial connections 
(Lv et al., 2021). 

An interesting development in disease outbreak prediction is the use of clinical, environmental, and 
social media data. By combining information from numerous sources, researchers seek to improve 
the accuracy of predictive models and boost early outbreak detection (da Silva et al., 2021). The com-
plementing character of several data modalities has been exploited to enhance prediction perfor-
mance by means of ensemble learning, feature engineering, and data fusion (Liu et al., 2024). 

As the area of disease epidemic prediction grows, efforts have been made to unify evaluation metrics 
and benchmark datasets to allow comparisons across many methodologies. Academics can evaluate 
their predictive models on real monitoring data and progress the development of effective forecast-
ing systems through projects like the Global Epidemic Prediction Initiative (EPI) and Predict the 
Next Pandemic (PREDICT) (Liu et al., 2024). 
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PROPOSED METHOD 
TGCN is a new framework designed to forecast disease outbreaks by integrating temporal modeling 
techniques with GCNs. The vast spatiotemporal information included in disease surveillance data is 
employed by TGCNs to record the dynamic changes in disease transmission networks (Figure 1). 

 
Figure 1. Proposed TGCNs method  

GRAPH CONSTRUCTION 
Graph Building TGCNs begin with the construction of a graph illustrating the spatial connectivity of 
different geographic locations. A graph’s edges indicate how much nodes interact with one another, 
while nodes represent specific locations (such as cities or regions). Among the many factors that 
might affect the construction of the graph are social links, transportation networks, and geographic 
proximity, as shown in Figure 2. 

Figure 2. Graph representation 
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GRAPH CONVOLUTIONAL LAYERS  
Graph Building TGCNs begin with the construction of a graph illustrating the spatial connectivity of 
different geographic locations. After the graph is constructed, TGCNs learn spatial representations 
of nodes using graph convolutional layers. TGCNs help to learn the hierarchical representations of 
existing underlying disease transmission over several network transmissions, social links, and several 
geographic proximities. 

Graph Building TGCNs begin with the construction of a graph illustrating the spatial connectivity of 
different geographic locations. After the graph is constructed, TGCNs learn spatial representations 
of nodes by use of graph convolutional layers. TGCNs help to learn the hierarchical representations 
of existing underlying disease transmission over several network transmissions, social links, and sev-
eral geographic proximities, as in Figure 3. 

Figure 3. Graph convolution operation 

TEMPORAL CONVOLUTIONAL LAYERS 
The Temporal Convolutional Layers TGCNs combine temporal convolutional layers with spatial 
modeling to capture temporal trends in data on disease occurrence. The temporal convolutional layer 
is fed a temporal series of statistics on sickness incidence gathered over time. Also, combining several 
data with spatial representations obtained from the graph convolutional layers allows TGCNs to ef-
fectively model the spatiotemporal dynamics of disease transmission networks. The evaluation of 
temporal sequences over several factors such as count, time, patterns, trends, and spreading ratio of 
the disease is shown in Figure 4. 

Figure 4. Temporal convolutional layers 

FUSION OF SPATIAL AND TEMPORAL FEATURES 
Fusion of the temporal information produced by temporal convolutional layers with the spatial rep-
resentations generated from graph convolutional layers captures the combined impact of temporal 
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and spatial parameters on disease transmission. This fusion method allows the combination of geo-
graphical connectivity data and time trends to produce a single image of the disease transmission net-
work (Figure 5). 

Figure 5. Fusion of spatial and temporal features 

PREDICTION AND EVALUATION 
TGCNs predict future outbreak episodes during inference by means of an analysis of the learned 
representations and extrapolation of future patterns. The performance of the model is evaluated us-
ing standard assessment metrics such as accuracy, precision, recall, and area under the receiver oper-
ating characteristic curve (AUC-ROC). 

GRAPH CONSTRUCTION 
TGCNs offer a whole paradigm for disease outbreak prediction by fusing graph convolutional net-
works with temporal modeling techniques. In public health surveillance, TGCNs enable accurate dis-
ease outbreak forecasts via the effective integration of temporal and spatial data. The graph in 
TGCNs refers to the process of displaying spatial connectivity among various geographical locations. 
Graph creation is described using equations: 

Define nodes and edges 
• Nodes (N): Within a graph, nodes represent specific locations, such as cities, regions, or 

countries. 
• Edges (E): Links or interactions between the nodes are called edges (E). Any two nodes con-

nected or near to one another are indicated by an edge. 

Construct adjacency matrix (A) 
• The adjacency matrix (A) encodes the topology of graph connections. 
• Element Aij of the adjacency matrix represents the degree of connection between nodes i 

and j. 
• A binary graph (in which edges are either present or missing) has Aij=1 if nodes i and j have 

an edge and Aij=0 otherwise. 
• Aij is the weight of the edge between nodes i and j in weighted graphs, in which edges have 

different strengths or weights. 

Graph convolutional operation 
• The adjacency matrix, once constructed, is used to acquire information from neighboring 

nodes in the graph’s convolutional layers. 
• The definition of the graph convolution operation is as follows: 

H(l+1)=σ(D’−0.5  A’D’−0.5 H(l)W(l)) 

Temporal Features (From TCN)

Feature Fusion (Concatenation)

Graph Features (From GCN)

Final Output (Prediction)
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where 

H(l) - node features at layer 𝑙𝑙l 
A’=A+I - adjacency matrix  
I - identity matrix) 
D’ - degree matrix of A’ 
W(l) - learnable weight matrix 
σ - activation function 

GRAPH  CONVOLUTIONAL LAYERS 
Node representations are updated in TGCNs by graph convolutional layers incorporating data from 
neighboring nodes.  

Input node features 
• From layer l before it, the graph convolutional layer takes as input node attributes H(l). 
• The features of each node in the network are embodied in a feature vector. Data on popula-

tion density, disease incidence rates, or environmental factors can be among these features. 

Construct adjacency matrix 
• Adjacent matrix A encodes the graph’s connection structure. 
• Every element Aij of the adjacency matrix denotes the strength of the connection between 

nodes i and j. 

Augment adjacency matrix 
• Self-connections are included in the adjacency matrix A via an identity matrix I, which also 

ensures that the features of every node are included during the convolution process. 
• A’ is the definition of the augmented adjacency matrix. 

Normalize adjacency matrix 
• Stability and invariance of the convolution process to changes in graph size are provided by 

normalizing the improved adjacency matrix A’. 
• The degree matrix D’ of A’ is made up of the weights of the edges incident to node i put to-

gether. 
• D’−0.5 and D’−0.5 are used to normalize A’ by left and right multiplication, respectively. 

Perform convolution operation 
• Graph convolution is carried out using the normalized adjacency matrix A’ and the input 

node properties H(l). 
• Convolution mixes for each node in the graph relational and spatial data from neighboring 

nodes. 
• The graph convolution process is given as: 

H(l+1) = σ(D’−0.5 A’D’−0.5 H(l)W(l)) 

Apply activation function 
• After convolution, the produced node representations H(l+1) are element-by-element ap-

plied with an activation function (such as sigmoid or ReLU). 
• It is, therefore, possible to learn complex node relationships and provide the model non-lin-

earity. 

Output node representations 
• The graph convolutional layer produces updated node representations H(l+1) that absorb 

both local and global information from the graph. 
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• These representations may be transferred to higher layers for more processing or used for 
downstream activities like node categorization or graph-level prediction. 

TEMPORAL CONVOLUTIONAL LAYERS 
Temporal convolutional layers of TGCNs capture time-varying patterns and dynamics in illness inci-
dence data. The temporal convolutional layer process includes the following. 

Input temporal sequence 
• The temporal convolutional layer is fed a temporal series of statistics on sickness incidence 

gathered over time. 
• Time steps in the sequence represent discrete observation intervals (days, weeks, months, 

etc.). 

Define temporal convolutional filters 
• Temporal convolutional layers collect temporal information from the input sequence by use 

of one-dimensional convolutional filters. 
• With a given kernel size 𝑘𝑘, these filters glide across the input sequence to compute convolu-

tions. 

Output temporal features 
• The temporal convolutional layer produces a set of temporal characteristics that document 

patterns and trends in the input sequence. 
• Higher-level abstractions of the temporal dynamics in the illness incidence data, these fea-

tures direct subsequent network layers. 

Multiple convolutional layers 
• The model learns hierarchical representations of temporal data through deeper architectures 

made feasible by stacking temporal convolutional layers. 
• Each succeeding layer picks up even more abstract temporal properties by convolving over 

the output of the preceding one. 

Output representation 
• To completely grasp how temporal and spatial components interact to propagate diseases, 

these features can be combined with spatial representations derived from graph convolu-
tional layers in TGCNs. 

FUSION OF SPATIAL AND TEMPORAL FEATURES 
To generate a fusion of temporal and spatial information in TGCNs, temporal properties acquired by 
temporal convolutional layers are coupled with taught spatial representations from graph convolu-
tional layers. 

Spatial feature extraction 
• The spatial properties are learned by the graph convolutional layers, which in the disease 

transmission network record the spatial dependencies and interactions between geographical 
sites. 

• A spatial feature vector defining the characteristics or attributes of each node is associated 
with it by means of graph convolution techniques. 

Temporal feature extraction 
• In extraction, the usage of temporal convolutional layers focuses on representing the tem-

poral patterns and dynamics in illness incidence data gathered over time. The maximum level 
of temporal representation will be encoded by patterns and trends in the data or information 
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retrieved from the temporal convolutional layers convolving over the input temporal se-
quence. 

Alignment of spatial and temporal features 
• Before performing a fusion operation, spatial and temporal features need to be aligned with 

the same clustered features, ensuring compatibility. 
• The proper integration of the temporal and spatial representations to improve prediction 

performance and capture similar aspects of the data is ensured by this alignment stage. 

Concatenation or element-wise fusion 
• The combination of temporal and spatial features with new feature dimensions is known as 

concatenation. On the other hand, element-wise fusion focuses on addition or multiplication 
and can be used to map with the spatial and temporal properties. 

Non-linear transformation 
• This non-linear transformation phase mainly focuses on incorporating non-linearity into the 

model with the feature models. 

Feature refinement 
• The fused feature representations can be further refined by adding more layers or modules 

after fusion to enhance prediction performance.  
• The end result of the fusion process is a unified picture of the disease transmission network 

that combines temporal and spatial data. 

Output representation 
• In disease outbreak forecasting, for instance, this representation captures the combined in-

fluence of spatial connectedness and temporal dynamics on disease spread. 

RESULTS AND DISCUSSION 
We evaluated the proposed TGCNs for disease outbreak prediction using simulated datasets and ac-
tual disease monitoring data. We used the Python framework to get the simulation results in this re-
search work. Also, it examines historical disease surveillance data from the WHO and the CDC cov-
ering a range of several infectious diseases (Table 1). 

We implemented the TGCN model with the PyTorch and TensorFlow packages in experiments on a 
computing cluster with Intel Xeon CPUs and NVIDIA Tesla V100 GPUs. We evaluated, on held-
out test data, the TGCN model’s accuracy, precision, recall, F-score, Loss, and Execution time (de-
picted in Figure 6-11). 

Table 1. Experimental settings 

Parameter Sample value 
Simulation Tool EpiModel 

Real-World Datasets CDC, WHO 
Diseases Influenza, Dengue Fever, Measles 

Preprocessing Method Feature extraction, normalization 
Spatial Connectivity Graph Geographic proximity, transportation networks 

Framework/Library TensorFlow, PyTorch 
GPU Model NVIDIA Tesla V100 
CPU Model Intel Xeon 

Learning Rate 0.001 
Batch Size 64 
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Parameter Sample value 
Optimization Algorithm Stochastic gradient descent 

Loss Function Binary cross-entropy 
Evaluation Metrics Accuracy, Precision, Recall, F1-score 
Training Epochs 100 

Dropout Rate 0.2 
Activation Function ReLU, Sigmoid 

Dataset Split 80% train, 10% validation, 10% test 
 

COMPARISON WITH EXISTING METHODS 
Dataset 
The dataset consisted of 10,000 samples, representing weekly disease cases across 50 geographical 
regions over 200 weeks. Each region was characterized by demographic attributes such as population 
density, healthcare access index (0-1 scale), and average mobility rate. Environmental factors like 
average weekly temperature (15-35°C) and humidity (30-70%) were also included (see Table 2). 
These variables were derived using spatiotemporal interpolation from synthetic public health and 
meteorological datasets. Additionally, infection rates for two diseases (A and B) were simulated using 
a Susceptible-Infectious-Recovered (SIR) model. The resulting data provided realistic spatiotemporal 
patterns for validating the Temporal Graph Convolutional Network’s performance. 

Simulated dataset - construction 
The dataset was constructed by generating synthetic data using a spatiotemporal SIR model with real-
istic demographic and environmental factors. Each region’s infection data was calculated using the 
equations: 

( 1) ( ) ( ) /I t S t I t Nβ+ =  
( 1) ( )R t I tγ+ =  

where  
β and γ were set at 0.4 and 0.1, respectively.  

Spatial connectivity between regions was modeled as a weighted adjacency matrix using Gaussian 
similarity between locations. The dataset was integrated into the TGCN by representing regions as 
graph nodes and adjacency weights as edge attributes. Temporal sequences of infection data served 
as node features input for the TGCN. 

Feeding dataset into TGCN framework 
The dataset was structured into a graph format where nodes represented 50 regions, and edges cap-
tured spatial relationships. A feature matrix of size 50×200 included weekly infection counts, mobil-
ity rates, and weather conditions per region over 200 weeks. The adjacency matrix (50×50) encoded 
inter-region connections. Temporal sequences were segmented into sliding windows of 10 weeks, re-
sulting in input tensors of shape (10,50,5), where 5 represents feature dimensions. These tensors were 
fed into the TGCN framework, which alternately applied temporal convolutions and graph convolu-
tions for dynamic pattern learning. 
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Table 2. Dataset structure 

Region 
ID 

Week Infection rate 
(disease A) 

Infection rate 
(disease B) 

Mobility 
index 

Avg. temp 
(°C) 

Humidity 
(%) 

1 1 0.012 0.008 0.5 28 45 
1 2 0.014 0.007 0.52 29 50 
... ... ... ... ... ... ... 
50 200 0.010 0.006 0.6 27 55 

The dataset shape was 50×200×550, suitable for input into the TGCN, combining spatial and tem-
poral features for accurate disease prediction. 

Figure 6. Accuracy 

Figure 7. Precision 
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Figure 8. Recall 

Figure 9. F-score 
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Figure 10. Loss  

Figure 11. Execution time 

With the testing dataset, the proposed TGCN method increases accuracy by around 10% over RNN. 
This implies that TGCN outperforms RNN significantly in precisely predicting disease breakout oc-
currences. 

Over ResNet, TGCN increases accuracy on the testing dataset by roughly 14%. This underlines how 
much better TGCN captures temporal and spatial dynamics for more accurate disease outbreak pre-
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The proposed TGCNs provide a higher margin rate from 10% to 15% in the testing and validation 
phases than the existing method in stable environment datasets. The proposed TGCN method pro-
vides a higher performance rate than the existing methods, such as RNN and ResNets. Also, it Uti-
lises both temporal and spatial data. The proposed TGCN method produces a higher rate of accurate 
and timely forecast results, enabling preventative actions to halt the spread of infectious illnesses. 

CONCLUSION 
In conclusion, the proposed TGCN method helps achieve improved disease outbreak prediction in 
public health surveillance. TGCNs produce more precise predictions than existing methods like 
RNN and ResNet by combining geographic regions’ connection and disease transmission dynamics 
over time by merging spatial and temporal data. The results and discussion show that TGCNs sys-
tematically outperform other datasets in terms of accuracy, precision, recall, and F1 score. Moreover, 
TGCNs are practical for actual application in public health surveillance systems because, despite their 
advanced features, they maintain processing cost efficiency. By providing a useful understanding of 
the dynamics and spread patterns of diseases, TGCNs have the potential to alter disease surveillance 
and management methods, hence improving public health outcomes. In the future, aspects of this 
research will focus on comparing and implementing several improvised and enhanced deep learning 
algorithms into this dataset so we can provide better accuracy and prediction in the public health sec-
tor. 
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