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Abstract 
When people write a report that involves a complex argument towards a conclusion, they can use 
a design tool called the inference tree, which enables them to outline the argument, and quickly 
detect reasoning errors in the outline. Yet when the argument is very complex, the inference tree 
may spread over several pages, so that writers may often have to flip back and forth between 
those pages. To prevent unnecessary flipping, they can draw the tree as a hierarchy of modules, 
similar to a modular hierarchy of program flowcharts or structure charts, where a major module 
controls several minor modules. In drawing the tree, writers can adopt four principles of Comput-
ing: modularity, the criterion of minimal coupling between modules, and the methods of forward 
and backward chaining to draw all the modules. 

Keywords: homological transfer, report writing, expository report, report outline, complex argu-
ment, inference tree 

Introduction 
When people write a report, they should first outline it, so as to ensure a coherent overall struc-
ture before writing the text in detail. For that purpose they can use various design tools, depend-
ing on the type of report. For instance, in the case of a descriptive report, which simply describes 
something by listing its attributes, they could use a simple tabular tool – such as the topic outline 
or the paragraph outline (Ruch & Crawford, 1988, pp.240-246). Yet for an expository report, 
which attempts to prove something, by presenting a substantial argument, those simple tools are 
inadequate. In that kind of report, the argument typically involves a complex system of inferential 
connections between paragraphs, and writers need more advanced tools that enable them to check 
for a wide variety of potential reasoning errors in and between the inferences. For instance, writ-
ers could use the branching diagram (Arnaudet & Barrett, 1984), or the inference tree (Mende, 
2004c, 2004d).  

Yet those more advanced tools are awkward to use when an argument involves a very complex 
system of inferential connections between paragraphs. So the present paper now addresses the 

problem of designing a very complex 
expository argument. 

A solution was found by employing 
the research method called homologi-
cal transfer (Mende, 1990). The HT 
method exploits inter-disciplinary 
homologies, which are structural or 
functional similarities between sys-
tems that are studied in different aca-
demic disciplines. Many such ho-
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mologies exist, and when they do, researchers can transfer well-known principles of one disci-
pline into another discipline where they are unknown. For that purpose, HT recommends four 
steps: (1) identify systems homologies; (2) recognise opportunities to transfer principles of a 
source field into a target field, (3) adapt the source principles to suit the target field, and (4) test 
the new principles in the target field. 

Here, the four HT steps were carried out as follows. 

1. A structural homology was identified between design problems posed by a very complex 
expository argument and a very complex computer program. 

2. The homology suggested that Information Systems solutions could be re-used in the process 
of designing an expository argument. 

3. Well known Information Systems principles of modularity and decoupling were trans-
formed into guidelines for designing a hierarchy of inference trees. These guidelines were 
extended by including two chaining procedures developed in an earlier paper (Mende, 
2004c). 

4. The guidelines were tested by drawing trees of several very complex expository arguments.  

The next two sections review basic concepts that were introduced in the earlier papers (Mende, 
2004a+b), so that this paper can be read independently. Subsequent sections then cover the four 
transfer steps in detail, with emphasis on the results. 

Expository Reports and Inference Trees 
Like any other report, an expository report consists of paragraphs, and they are typically grouped 
into introductory, body and concluding sections. The introductory paragraphs tell readers what is 
to be proved, how it is to be proved, and why they need to know. The body and concluding para-
graphs contain the expository argument that proves what is to be proved. Essentially, the argu-
ment consists of the core ideas of those paragraphs, plus inferences between the core ideas. The 
core idea of a paragraph is the central idea, and is surrounded by peripheral ideas such as exam-
ples, references, etc. which establish that the core idea is true. The inferences, which are recog-
nisable by keywords such as ‘so’ and ‘therefore’, derive new core ideas from previous core ideas. 

Table 1 presents a simple example of an argument that spreads over ten paragraphs. Each para-
graph begins with the core idea, and is followed by peripheral ideas. (The details of the peripheral 
ideas are omitted, because you do not need to know whether core ideas are true in order to detect 
errors in the inferences between them). The ten core ideas are connected by four inferences: from 
1 and 2 to 3; from 4 and 5 to 6; from 3, 6 and 7 to 8, and from 8 and 9 to 10. 

The argument in Table 1 has no reasoning errors. The first two inferences are valid inductive in-
ferences from facts to generalisations of narrow scope. The third inference is another valid induc-
tive inference – from the narrow generalisations to a generalization of wider scope. The fourth 
inference is a valid analogical inference from two generalisations to another generalisation.  

Yet in other arguments reasoning errors can easily occur, especially as the number of core ideas 
increases (Evans, 1982; Wilson, 1998, p. 208). These errors occur because the many core ideas 
are surrounded by very many peripheral ideas, which overload the writer’s short-term memory, 
causing him or her to lose track of the flow of reasoning. So in order to detect reasoning errors, 
writers need some means of ignoring the multitude of peripheral ideas, and focusing their atten-
tion on the core ideas plus the inferences between them.  
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Table 1: IT and Evolution 

  1. IBM hardware evolved by selection. For example … 

  2. Apple hardware evolved by selection. For example … 

  3. So hardware evolves by selection. 

  4. MS software evolved by selection. For example … 

  5. Lotus software evolved by selection. For example … 

  6. So software evolves by selection. 

  7. IT includes hardware and software.  

  8. So IT evolves by selection. This is confirmed by … 

  9. Bio-organisms also evolve by selection. Darwin … 

10. Therefore IT evolves like bio-organisms. This insight is … 

 

For that purpose an earlier paper (Mende, 2004c) exploited a homology between the process of 
designing a computer program and the process of outlining an expository argument. Programmers 
need to ensure that the paragraphs of a program fit together coherently, and for that purpose they 
can draw a flowchart or structure chart. Similarly, writers need to ensure that the core ideas of an 
argument fit together coherently, and for that purpose they can draw an inference tree. 

The inference tree is a hybrid of the flowchart of Programming and the tree-structure of Com-
puter Science. It outlines the gist of an expository argument, by representing the core ideas as 
boxes, and the inferences as arrows between the boxes. The core ideas are grouped in three col-
umns: 

1. Premises are core ideas that are not inferred from other core ideas of the argument. Typi-
cally, they are empirical observations or references to the findings of other publications. 

2. Intermediates are inferred from other core ideas, and other core ideas are inferred from 
them. 

 

IBM hardware evolved by selection 

Apple h-ware evolved by selection 
hardware evolves 
by selection 

IT evolves like 
bio-organisms 

IT = hardware + software 

Bio-organisms evolve by selection 

IT evolves by selection 

premises intermediates conclusion 

MS software evolved by selection 

Lotus s-ware evolved by selection 
software evolves 
by selection 

Fig. 1. Inference tree of box 1
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3. Conclusions are inferred from other core ideas, but no other core ideas are inferred from 
them. Typically, an argument has only one conclusion. 

The flow of reasoning is downward through the rows, and from left to right within each row.  

For example, Figure 1 is the inference tree of the argument in Table 1. 

Many other arguments have similar connections between their core ideas. For instance, you could 
get three other arguments toward the same conclusion by replacing the word ‘selection’ in Figure 
1 with the word ‘inheritance’, or the word ‘variation’, or even  the words ‘inheritance, variation 
and selection’. All those arguments would be valid because their inference trees reveal no errors 
in the connections between core ideas. 

Reasoning Errors 
Yet many other arguments do have reasoning errors, and those errors are obvious in their infer-
ence trees (Mende, 2004d). For example, the tree in Figure 2 has two effectiveness errors that 
undermine the credibility of the argument, and the two trees in Figures 3 and 4 have five effi-
ciency errors that waste a reader’s time. These errors can be detected simply by inspecting the 
inferential arrows between boxes, or the lack of such arrows – without even knowing whether the 
core ideas are true, or even understanding those core ideas.  

Many different kinds of reasoning errors can 
occur in an argument (Mende, 2002a), and many 
of them can be detected in an inference tree. 
Reasoning effectiveness errors undermine the 
credibility of the argument. 

 Presumption: the inference input presumes 
the output. 

 Illusory relevance: an input seems to be 
relevant to the output, but isn’t actually. 

 Inadequate inference: the inference omits 
some input that is necessary to support the 
output. 

 Weak induction: the inference has too few 
inputs to justify the output. 

 Formal fallacy: the inference distorts an es-
tablished rule of valid deductive inference. 

 

2 

4 

8 

6 

5 
overloaded 
inference 

7 

9 

1 

3 redundancy

Fig. 4. Another two efficiency errors 

 

irrelevance 

2 

3 

7 

5 

4 

premature 
inference 

8 

1 

belated 
inference 6 

9 

Fig. 3. Three efficiency errors 

 

unsupported 
conclusion 

1 

2 

5 

3 

circular 
reasoning 

4 

6 8 7 

Fig. 2. Two effectiveness errors 
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 Mismatch: the inference output includes concepts that do not appear in any of the inputs. 
 Missing premises: the argument has too few premises to justify the conclusion. 
 Circular reasoning: an intermediate is merely a synonym of a premise or of the conclusion. 
 Missing the point: the argument supports a conclusion other than the stated conclusion. 

Efficiency errors waste a reader’s time. 

 Irrelevance: some of the inference inputs are not necessary to infer the output. 
 Omitted inference: the inputs imply an output, but the inference output is not stated explicitly. 
 Overloaded inference: an inference has unnecessarily many inputs and/or outputs, and can be 

split into simpler inferences which are easier to understand. 
 Redundancy: parts of the argument are unnecessary to prove the conclusion. 
 Belated inference: the inference output is placed late in the argument, but some of the inputs 

are placed early in the argument.  
 Premature inference: the output is placed early in the argument, but the inputs are placed late 

in the argument. 
 Incoherence: similar propositions are grouped together in the same section, and inferences 

connect those propositions not to one another but to propositions in other sections. 
 Inconclusive argument: the argument has no real conclusion: the conclusion may be missing 

entirely, or may be trivial (e.g. ‘much has been written on this topic’). 

So when writers want to produce a complex expository argument, they should begin by outlining 
it in the form of an inference tree, and then use the tree to check for reasoning errors, in order to 
eliminate them before writing the argument in detail. 

Very Complex Arguments 
Yet in real life, many an expository argument is very much more complex than Table 1. So rea-
soning errors are even more likely to occur, and an inference tree would be even more useful for 
error-checking. Yet in such cases the tree would be very much larger than Figure 1, and would 
spread over several A4 pages. So it would be awkward to draw, and to check, because the writer 
must continually flip back and forth among the various pages.  

To address this problem, HT step 1 identified a homology between the process of designing a 
very complex expository argument and the process of designing a very complex computer pro-
gram. If a computer program is very complex, its flowchart also spreads over several pages, mak-
ing it awkward to draw and to check. So programmers and writers face similar problems. 

HT step 2 then exploited this homology by recognised an opportunity for knowledge transfer 
from Information Systems to Report Writing. The similarity between problems suggested that IS 
solutions could be re-used in the process of designing an expository argument. 

To solve the flowcharting problem, programmers long ago evolved the technique of modularisa-
tion (Yourdon, 1975, pp. 93-130), which lets an overall control module direct the execution of 
several detailed processing modules. So instead of one large flowchart, programmers draw a hier-
archy of small flowcharts: a high-level flowchart THAT outlines the control module, and several 
low-level flowcharts THAT outline the processing modules. The high-level flowchart is con-
nected to the low-level flowcharts, but the low-level flowcharts are largely independent of each 
other. This arrangement led to the ‘structure chart’ (Jackson, 1975), which represents any pro-
gram as a tree structure such as Figure 5.  

HT step 3 showed that writers can also use the modularity principle to decompose a very complex 
expository argument. They can divide the argument into a concluding argument at the end of the 
report, and several supporting arguments in the body sections of the report. A high-level tree out-
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lines the concluding argument, and several low-level trees outline the body arguments. The high-
level tree is connected to the low-level trees, but the low-level trees are not connected to one an-
other, and can be drawn (and checked) independently. 

For example, the three low-level trees in Figures 6 to 8, plus the high-level tree in Figure 9, out-
line a much-extended form of the argument of Table 1. The premises consist of historic evidence 
of the three mechanisms of Inheritance, Variation and Selection (IVS). The three low-level trees 
outline low-level arguments from the premises towards low-level conclusions that computers 
evolved by IVS, that networks evolved by IVS, and that software evolved by IVS. Then the high-
level tree outlines the concluding argument from the three low-level conclusions through the in-
termediate conclusion that IT evolved by IVS to the final high-level conclusion that IT evolves 
like bio-organisms. 

 
program 

repeat initialise terminate 

 module 2 module 1 module 3 

page 0 

   

module 1 

 

 

  

  

module 2 

 

 

  

  

module 3 

 

 

  

  

page 1 page 2 page 3 

Fig. 5. Modular program structure chart  
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networks       
evolved by IVS 

terminal 

communications      
evolved by IVS 

teleprocessor 

network 

ARPANET 

the web           
evolved by IVS 

internet 

networks include data communications and the web 

www 

Fig. 7. Low-level inference tree on the evolution of networks  

Fortran 

Basic 

Visual Basic 

DOS 

operating systems 
evolved by IVS 

Windows 

NT 

software          
evolved by IVS 

hierarchical 

network 

relational 

software includes languages, operating systems and databases 

languages              
evolved by IVS 

database systems       
evolved by IVS 

Fig. 8. Low-level inference tree on the evolution of software 

 

tabulator 

computers 
evolved by IVS 

ENIAC 

Apple 

record player 

discs                 
evolved by IVS 

magnetic drum 

magnetic disc 

typewriter 

printers evolved 
by IVS 

line printer 

laser printer 

computers include CPU, discs and printers 

the CPU               
evolved by IVS 

Fig. 6. Low-level inference tree on the evolution of computers 
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The four trees enable you to check for reasoning errors, and eliminate them before writing the 
report in detail. Then the trees would serve as useful blueprints for detailed report writing. There-
fore writers can gain substantial benefits by adopting the modularity principle to outline a very 
complex expository argument in the form of a hierarchy of inference trees. But how should they 
proceed to draw the hierarchy of inference trees? 

Design Procedures 
An answer was found by extending a pair of procedures that were recommended in an earlier pa-
per (Mende, 2004b). They are manual procedures that emulate the forward and backward chain-
ing algorithms of Artificial Intelligence.  

The forward chaining procedure lets writers start with the facts, and design low-level trees of mi-
nor arguments from the facts towards low-level conclusions. Then they can use the conclusions of 
the low-level trees as premises in designing a high-level tree of the major argument towards the 
final conclusion.  

For example, the low-level tree of Figure 8 could be designed in five steps. 
1. Focus on historic cases that involve software. 
2. Select the cases of evolving languages, and infer that languages evolved by IVS. 
3. Select the cases of operating systems, and infer that operating systems evolved by IVS. 
4. Select the cases of database systems, and infer that database systems evolved by IVS. 
5. From the results of steps 2-4, conclude that software evolved by IVS. 

Then, the high-level tree of Figure 9 could be designed by using the conclusions of the low-level 
trees 6-8 as premises, and combining them into wider generalisations until the desired conclusion 
emerges. 

1. Select the premises ‘computers evolved by IVS’ and ‘networks evolved by IVS’ from the 
conclusions of Figures 6 and 7, and combine them into ‘hardware evolved by IVS’. 

2. Add the premise ‘software evolved by IVS’ from the conclusion of Figure 8, and together 
with the premise ‘IT = h-ware + s-ware’, combine them into ‘IT evolved by IVS’. 

3. From the additional premise ‘trends continue’, infer ‘IT evolves by IVS’. 
4. From the additional premise ‘bio-organisms evolve by IVS’, infer that ‘IT evolves like bio-

organisms’. 

 

IT evolves like 
bio-organisms 

bio-organisms 
evolve by IVS 

computers 
evolved by IVS 

IT = h + s-ware 
IT                      
evolved by IVS 

IT evolves by IVS 

networks     
evolved by IVS 

software    
evolved by IVS 

hardware        
evolved by IVS 

trends continue 

Fig. 9. High-level inference tree on the evolution of IT  
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The backward chaining procedure lets writers begin by hypothesising the desired conclusion, and 
design a high-level tree from that hypothesis towards intermediate hypotheses and finally facts. 
For example, the high-level Figure 9 could be designed in five steps. 

1. Hypothesise the desired conclusion ‘IT evolves like bio-organisms’. 
2. From the fact ‘bio-organisms evolve by IVS’, derive the new hypothesis ‘IT evolves by 

IVS’. 
3. From the assumption ‘trends continue’, derive the new hypothesis ‘IT evolved by IVS’. 
4. Divide the new hypothesis into hardware and software hypotheses. 
5. Divide the hardware hypothesis into computer and network hypotheses. 

Then the three low-level trees of Figures 6-8 could be designed by selecting the intermediate hy-
potheses about computers, networks and software, one by one, and working backward to the rele-
vant historic facts. For example, Figure 8 would be designed in three steps. 

1. Get the intermediate hypothesise ‘software evolved by IVS’ from the high-level tree. 
2. From the fact that software includes languages, operating systems and databases, derive the 

new hypotheses ‘languages evolved by IVS’, ‘operating systems evolved by IVS’, and ‘da-
tabases evolved by IVS’. 

3. For each of these hypotheses, adduce evidence from historical cases. 

Therefore writers can easily design a modular hierarchy of inference trees by using forward or 
backward chaining (or a combination of the two). But a problem now arises, because writers can 
use the chaining procedures to produce several alternative argument hierarchies from identical 
premises towards the identical conclusion – and some of these hierarchies are less efficient than 
others. 

Avoiding Inefficient Designs 
An argument hierarchy is inefficient if an alternative hierarchy would reach the same conclusion 
with fewer paragraphs, sentences and words. In the absence of appropriate guidelines, writers can 
easily produce an inefficient hierarchy. For example, when sixty third-year university students 
were asked to prove that IT evolves like bio-organisms, almost all of them chose an inefficient 
hierarchy, similar to the one below. Its high-level tree is Figure 10; its first low-level tree is Fig-
ure 11, and the other two low-level trees are similar, with the word ‘inheritance’ merely being 

 

Fig. 10. Inefficient high-level tree for the evolution of IT 

IT evolves like bio-
organisms, by IVS 

Bio-organisms 
evolve by IVS 

IT evolves by 
Inheritance 

IT evolves by 
Variation  

IT evolves by 
Selection  IT evolved by IVS 

trends continue IT evolves by IVS 
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replaced by ‘variation’ and ‘selection’ respectively.  

This arrangement is inefficient because the case evidence is distributed over several low-level 
trees, which requires that each tree must involve repeated references to all the cases. So when a 
reader encounters ENIAC on page 2 of the resulting report, under the heading Inheritance, and 
then encounters ENIAC again on page 8 under the heading Variation, he would have forgotten 
important historical details that were mentioned on page 2. 

 tabulator 

CPU evolved by 
inheritance 

ENIAC 

Apple 

record player 

discs evolved by 
inheritance 

magnetic drum 

magnetic disc 

terminal 

data communications 
evolved by inheritance 

teleprocessor 

LAN 

typewriter 

printers evolved by 
inheritance 

line printer 

laser printer 

Fortran 

languages evolved by 
inheritance 

Basic 

Visual Basic 

WAN 

the web evolved by 
inheritance 

ARPANET 

www 

DOS 

operating systems 
evolved by inheritance 

Windows 

NT 

IT evolved by 
inheritance 

hierarchical 

network 

relational 
databases evolved by 
inheritance 

Fig. 11. Inefficient low-level tree for IT inheritance  
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To provide a simple guideline for avoiding efficient hierarchies, HT step 3 adapted the classic 
decoupling rule of Structured Information System Design (Yourdon & Constantine, 1979, chap. 6 
& 7): 

group strongly coupled components together into the same module,  
and separate weakly coupled components in different modules. 

This is applicable in Report Writing because core ideas would be strongly coupled if they are di-
rectly connected by inferences or if they are supported by the same peripheral ideas. Conversely, 
they would be weakly coupled if there are no inferences between them, or if their peripheral ideas 
are different. 

If writers had considered coupling in the inefficient IT evolution example of Figures 10 and 11, 
they might have seen that the evidence of inheritance, variation and selection is very strongly 
coupled within each individual technology, and strongly coupled within each technological class; 
but that technological classes are weakly coupled, and individual technologies are very weakly 
coupled. So the decoupling rule demands that each low-level tree should be premised exclusively 
on the strongly coupled IVS evidence within one selected technology or technological class, and 
should omit weakly coupled evidence from the other technologies or technological classes. Thus 
the three low-level trees should prove that computers have evolved by IVS, networks have 
evolved by IVS and software has evolved by IVS, leaving the high-level tree to combine those 
generalisations to the conclusion that IT evolves by IVS – as in the efficient IT evolution example 
of Figures 6 - 9. 

Therefore when writers draw a hierarchy of inference trees, they should use not only the modular-
ity principle and the chaining procedures but also the decoupling rule. 

Another Example 
The last recommendation was based on inductive and deductive arguments in the previous sec-
tions. Yet ‘the proof of the pudding is in the eating’. So HT step 4 was necessary to provide em-
pirical evidence that modular inference trees really work, by applying them to several examples 
of very complex expository arguments. One of those examples was presented above – name 

 for a small argument:                        
- draw  an inference tree                  
- check it for reasoning errors 

for a large argument, use either 
forward or backward chaining for a large argument:                 

- draw a hierarchy of trees         
- use chaining procedures         
- group strong coupled cores     
- check for reasoning errors 

for a large argument,                        
- group strongly coupled cores,        
- separate weakly coupled cores 

inference trees 
are useful to 
ensure effective  
& efficient 
expository 
arguments 

for large argument, draw trees of:    
- high-level argument                      
- low-level arguments 

Figure 12: High-level tree for Modular inference trees. 
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ly the case of IT evolution. Another example is presented below. It outlines the argument towards 
modular inference trees in the present paper. Its modular hierarchy is shown in Figures 12-16. 
The trees were drawn after a first draft of the paper had been written, not beforehand, as recom-
mended above (because the author had only a vague idea of what to prove). Nevertheless they 
revealed dozens of reasoning errors – which were then corrected, in the trees and the paper.  

 

 

 

 

for a small 
argument, draw  
an inference tree   
and check it for 
reasoning errors 

writers need some means of 
focusing their attention on the 
core ideas and inferences 

reasoning errors can occur,     
even in a small argument 

examples of effectiveness          
and efficiency errors (fig 2-4) 

an inference tree easily   
reveals reasoning errors 

earlier paper  a program flowchart ensures 
that paragraphs fit coherently; 
similarly an inference tree 
ensures that the paragraphs    
of an expository argument fit 
together 

paragraphs have core ideas and 
many peripheral ideas 

example of IT selection (fig 1) 

 
Figure 13: Low-level tree for a small argument 

for a large argument, single tree 
is awkward to draw & check 

program homology: modularise    
a flowchart by dividing it into a 
control module and subsidiary 
processing modules 

example: structure chart (fig 5) 

example: IT evolution (fig 6-9) 

modularise an inference tree 
by division into a concluding 
argument and several 
subsidiary arguments 

the trees serve as blueprints 
for writing the report in detail 

Reasoning errors are more likely 
to occur in a large argument 

for a large argument, 
draw  trees of                
- high-level argument    
- low-level arguments  

 
Figure 14: Low-level tree for a modular hierarchy 
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So writers can use modular inference trees to outline a complicated argument. 

Conclusion 
The homological transfer method was successfully applied here to transfer modularity, decoup-
ling and chaining principles of Computing into the field of Report Writing. Although these prin-
ciples are well known in Computing, they are not well known in Report Writing: so writers can 
learn something new. In particular, the new principles should appeal to writers in Information 
Systems and Computer Science, because they would readily appreciate the underlying homolo-
gies. 

The new modularity and decoupling principles of Report Writing are intended to be used in draw-
ing inference trees of expository arguments. An expository argument consists of the core ideas of 
the body-paragraphs in an expository report, plus inferences between them. An inference tree out-
lines an expository argument by means of boxes and arrows: the boxes represent core ideas in the 
various paragraphs of the report, and arrows represent the inferences between the core ideas, from 
premises through intermediates to the conclusion. The tree can be used to detect reasoning errors 
in an expository argument: both effectiveness errors that undermine the credibility of the conclu-
sion, and efficiency errors that waste the reader’s time.  

 

for a large argument, 
writers can easily draw a 
hierarchy  of inference 
trees using either forward 
or backward chaining 

example: f-c to draw fig 8 

AI homology: backward chaining 

example: b-c to draw fig 9+8 

AI homology: forward chaining 

 
Figure 15: Low-level tree for chaining 

 chaining procedures may   
produce inefficient 
hierarchy toward the same 
conclusion 

IS homology: decoupling rule 

for a large argument,    
- group strongly 
coupled cores into 
same module,              
- separate weakly 
coupled cores in 
different modules 

example: IT evolution (fig 10-11) 

decoupling rule is applicable in 
Report Writing  

analysis of inefficient fig. 10-11  

analysis of efficient fig. 6-9  

Figure 16: Low-level tree for decoupling 
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Except in a very simple argument – involving only three or four inferences – reasoning errors can 
easily occur. So in order to eliminate them, writers should draw an inference tree, and check it, 
preferably before writing the report in detail, or otherwise after writing a first draft. 

For a not-very complex argument that involves less than a dozen inferences, writers may draw a 
single inference tree. However if they attempt to do that  for a very complex argument, then the 
tree would spread over several pages, and it would be awkward to draw and to check. Instead, 
writers should draw a modular hierarchy of inference trees. This includes a top-level concluding 
argument and several low-level body arguments. To draw those trees, writers may emulate the AI 
techniques of forward or backward chaining. In forward chaining, they can design low-level trees 
from the facts to intermediate conclusions, and then design a high-level tree from the intermediate 
conclusions to the final conclusion. In backward chaining, they can design a high-level tree from 
the final conclusion to intermediate conclusions, and then design low-level trees from the inter-
mediate conclusions to the facts. With either technique, they should ensure that strongly coupled 
core ideas are grouped together in the same low-level tree, and that weakly coupled core ideas are 
separated in different trees. After drawing the modular hierarchy of inference trees, they can use 
the trees to check for reasoning errors that undermine credibility or waste the reader’s time. 

So inference trees are useful tools for ensuring effective and efficient argument in expository re-
ports: single trees for less-complex reports, and a modular hierarchy of trees for more complex 
reports. Readers are invited to experiment with these tools, and if they meet expectations, report 
their experiences in conferences and journals so that others can also use those tools. 

Then in due course someone may even automate them, so that word processors such as MS-Word 
would draw inference trees at the press of a button, and perhaps even check the reasoning. 
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