
Informing Science Journal Volume 8, 2005

Editor: Eli Cohen

Modular Inference Trees for Expository Reports

Jens Mende
University of the Witwatersrand, Johannesburg, South Africa

mendej@sebs.wits.ac.za

Abstract
When people write a report that involves a complex argument towards a conclusion, they can use
a design tool called the inference tree, which enables them to outline the argument, and quickly
detect reasoning errors in the outline. Yet when the argument is very complex, the inference tree
may spread over several pages, so that writers may often have to flip back and forth between
those pages. To prevent unnecessary flipping, they can draw the tree as a hierarchy of modules,
similar to a modular hierarchy of program flowcharts or structure charts, where a major module
controls several minor modules. In drawing the tree, writers can adopt four principles of Comput-
ing: modularity, the criterion of minimal coupling between modules, and the methods of forward
and backward chaining to draw all the modules.

Keywords: homological transfer, report writing, expository report, report outline, complex argu-
ment, inference tree

Introduction
When people write a report, they should first outline it, so as to ensure a coherent overall struc-
ture before writing the text in detail. For that purpose they can use various design tools, depend-
ing on the type of report. For instance, in the case of a descriptive report, which simply describes
something by listing its attributes, they could use a simple tabular tool – such as the topic outline
or the paragraph outline (Ruch & Crawford, 1988, pp.240-246). Yet for an expository report,
which attempts to prove something, by presenting a substantial argument, those simple tools are
inadequate. In that kind of report, the argument typically involves a complex system of inferential
connections between paragraphs, and writers need more advanced tools that enable them to check
for a wide variety of potential reasoning errors in and between the inferences. For instance, writ-
ers could use the branching diagram (Arnaudet & Barrett, 1984), or the inference tree (Mende,
2004c, 2004d).

Yet those more advanced tools are awkward to use when an argument involves a very complex
system of inferential connections between paragraphs. So the present paper now addresses the

problem of designing a very complex
expository argument.

A solution was found by employing
the research method called homologi-
cal transfer (Mende, 1990). The HT
method exploits inter-disciplinary
homologies, which are structural or
functional similarities between sys-
tems that are studied in different aca-
demic disciplines. Many such ho-

Material published as part of this journal, either online or in print,
is copyrighted by the publisher of Informing Science. Permission
to make digital or paper copy of part or all of these works for
personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial ad-
vantage AND that copies 1) bear this notice in full and 2) give
the full citation on the first page. It is permissible to abstract
these works so long as credit is given. To copy in all other cases
or to republish or to post on a server or to redistribute to lists
requires specific permission and payment of a fee. Contact
Editor@inform.nu to request redistribution permission.

mailto:Editor@inform.nu
mailto:mendej@sebs.wits.ac.za

Modular Inference Trees for Expository Reports

174

mologies exist, and when they do, researchers can transfer well-known principles of one disci-
pline into another discipline where they are unknown. For that purpose, HT recommends four
steps: (1) identify systems homologies; (2) recognise opportunities to transfer principles of a
source field into a target field, (3) adapt the source principles to suit the target field, and (4) test
the new principles in the target field.

Here, the four HT steps were carried out as follows.

1. A structural homology was identified between design problems posed by a very complex
expository argument and a very complex computer program.

2. The homology suggested that Information Systems solutions could be re-used in the process
of designing an expository argument.

3. Well known Information Systems principles of modularity and decoupling were trans-
formed into guidelines for designing a hierarchy of inference trees. These guidelines were
extended by including two chaining procedures developed in an earlier paper (Mende,
2004c).

4. The guidelines were tested by drawing trees of several very complex expository arguments.

The next two sections review basic concepts that were introduced in the earlier papers (Mende,
2004a+b), so that this paper can be read independently. Subsequent sections then cover the four
transfer steps in detail, with emphasis on the results.

Expository Reports and Inference Trees
Like any other report, an expository report consists of paragraphs, and they are typically grouped
into introductory, body and concluding sections. The introductory paragraphs tell readers what is
to be proved, how it is to be proved, and why they need to know. The body and concluding para-
graphs contain the expository argument that proves what is to be proved. Essentially, the argu-
ment consists of the core ideas of those paragraphs, plus inferences between the core ideas. The
core idea of a paragraph is the central idea, and is surrounded by peripheral ideas such as exam-
ples, references, etc. which establish that the core idea is true. The inferences, which are recog-
nisable by keywords such as ‘so’ and ‘therefore’, derive new core ideas from previous core ideas.

Table 1 presents a simple example of an argument that spreads over ten paragraphs. Each para-
graph begins with the core idea, and is followed by peripheral ideas. (The details of the peripheral
ideas are omitted, because you do not need to know whether core ideas are true in order to detect
errors in the inferences between them). The ten core ideas are connected by four inferences: from
1 and 2 to 3; from 4 and 5 to 6; from 3, 6 and 7 to 8, and from 8 and 9 to 10.

The argument in Table 1 has no reasoning errors. The first two inferences are valid inductive in-
ferences from facts to generalisations of narrow scope. The third inference is another valid induc-
tive inference – from the narrow generalisations to a generalization of wider scope. The fourth
inference is a valid analogical inference from two generalisations to another generalisation.

Yet in other arguments reasoning errors can easily occur, especially as the number of core ideas
increases (Evans, 1982; Wilson, 1998, p. 208). These errors occur because the many core ideas
are surrounded by very many peripheral ideas, which overload the writer’s short-term memory,
causing him or her to lose track of the flow of reasoning. So in order to detect reasoning errors,
writers need some means of ignoring the multitude of peripheral ideas, and focusing their atten-
tion on the core ideas plus the inferences between them.

 Mende

 175

Table 1: IT and Evolution

 1. IBM hardware evolved by selection. For example …

 2. Apple hardware evolved by selection. For example …

 3. So hardware evolves by selection.

 4. MS software evolved by selection. For example …

 5. Lotus software evolved by selection. For example …

 6. So software evolves by selection.

 7. IT includes hardware and software.

 8. So IT evolves by selection. This is confirmed by …

 9. Bio-organisms also evolve by selection. Darwin …

10. Therefore IT evolves like bio-organisms. This insight is …

For that purpose an earlier paper (Mende, 2004c) exploited a homology between the process of
designing a computer program and the process of outlining an expository argument. Programmers
need to ensure that the paragraphs of a program fit together coherently, and for that purpose they
can draw a flowchart or structure chart. Similarly, writers need to ensure that the core ideas of an
argument fit together coherently, and for that purpose they can draw an inference tree.

The inference tree is a hybrid of the flowchart of Programming and the tree-structure of Com-
puter Science. It outlines the gist of an expository argument, by representing the core ideas as
boxes, and the inferences as arrows between the boxes. The core ideas are grouped in three col-
umns:

1. Premises are core ideas that are not inferred from other core ideas of the argument. Typi-
cally, they are empirical observations or references to the findings of other publications.

2. Intermediates are inferred from other core ideas, and other core ideas are inferred from
them.

IBM hardware evolved by selection

Apple h-ware evolved by selection
hardware evolves
by selection

IT evolves like
bio-organisms

IT = hardware + software

Bio-organisms evolve by selection

IT evolves by selection

premises intermediates conclusion

MS software evolved by selection

Lotus s-ware evolved by selection
software evolves
by selection

Fig. 1. Inference tree of box 1

Modular Inference Trees for Expository Reports

176

3. Conclusions are inferred from other core ideas, but no other core ideas are inferred from
them. Typically, an argument has only one conclusion.

The flow of reasoning is downward through the rows, and from left to right within each row.

For example, Figure 1 is the inference tree of the argument in Table 1.

Many other arguments have similar connections between their core ideas. For instance, you could
get three other arguments toward the same conclusion by replacing the word ‘selection’ in Figure
1 with the word ‘inheritance’, or the word ‘variation’, or even the words ‘inheritance, variation
and selection’. All those arguments would be valid because their inference trees reveal no errors
in the connections between core ideas.

Reasoning Errors
Yet many other arguments do have reasoning errors, and those errors are obvious in their infer-
ence trees (Mende, 2004d). For example, the tree in Figure 2 has two effectiveness errors that
undermine the credibility of the argument, and the two trees in Figures 3 and 4 have five effi-
ciency errors that waste a reader’s time. These errors can be detected simply by inspecting the
inferential arrows between boxes, or the lack of such arrows – without even knowing whether the
core ideas are true, or even understanding those core ideas.

Many different kinds of reasoning errors can
occur in an argument (Mende, 2002a), and many
of them can be detected in an inference tree.
Reasoning effectiveness errors undermine the
credibility of the argument.

 Presumption: the inference input presumes
the output.

 Illusory relevance: an input seems to be
relevant to the output, but isn’t actually.

 Inadequate inference: the inference omits
some input that is necessary to support the
output.

 Weak induction: the inference has too few
inputs to justify the output.

 Formal fallacy: the inference distorts an es-
tablished rule of valid deductive inference.

2

4

8

6

5
overloaded
inference

7

9

1

3 redundancy

Fig. 4. Another two efficiency errors

irrelevance

2

3

7

5

4

premature
inference

8

1

belated
inference 6

9

Fig. 3. Three efficiency errors

unsupported
conclusion

1

2

5

3

circular
reasoning

4

6 8 7

Fig. 2. Two effectiveness errors

 Mende

 177

 Mismatch: the inference output includes concepts that do not appear in any of the inputs.
 Missing premises: the argument has too few premises to justify the conclusion.
 Circular reasoning: an intermediate is merely a synonym of a premise or of the conclusion.
 Missing the point: the argument supports a conclusion other than the stated conclusion.

Efficiency errors waste a reader’s time.

 Irrelevance: some of the inference inputs are not necessary to infer the output.
 Omitted inference: the inputs imply an output, but the inference output is not stated explicitly.
 Overloaded inference: an inference has unnecessarily many inputs and/or outputs, and can be

split into simpler inferences which are easier to understand.
 Redundancy: parts of the argument are unnecessary to prove the conclusion.
 Belated inference: the inference output is placed late in the argument, but some of the inputs

are placed early in the argument.
 Premature inference: the output is placed early in the argument, but the inputs are placed late

in the argument.
 Incoherence: similar propositions are grouped together in the same section, and inferences

connect those propositions not to one another but to propositions in other sections.
 Inconclusive argument: the argument has no real conclusion: the conclusion may be missing

entirely, or may be trivial (e.g. ‘much has been written on this topic’).

So when writers want to produce a complex expository argument, they should begin by outlining
it in the form of an inference tree, and then use the tree to check for reasoning errors, in order to
eliminate them before writing the argument in detail.

Very Complex Arguments
Yet in real life, many an expository argument is very much more complex than Table 1. So rea-
soning errors are even more likely to occur, and an inference tree would be even more useful for
error-checking. Yet in such cases the tree would be very much larger than Figure 1, and would
spread over several A4 pages. So it would be awkward to draw, and to check, because the writer
must continually flip back and forth among the various pages.

To address this problem, HT step 1 identified a homology between the process of designing a
very complex expository argument and the process of designing a very complex computer pro-
gram. If a computer program is very complex, its flowchart also spreads over several pages, mak-
ing it awkward to draw and to check. So programmers and writers face similar problems.

HT step 2 then exploited this homology by recognised an opportunity for knowledge transfer
from Information Systems to Report Writing. The similarity between problems suggested that IS
solutions could be re-used in the process of designing an expository argument.

To solve the flowcharting problem, programmers long ago evolved the technique of modularisa-
tion (Yourdon, 1975, pp. 93-130), which lets an overall control module direct the execution of
several detailed processing modules. So instead of one large flowchart, programmers draw a hier-
archy of small flowcharts: a high-level flowchart THAT outlines the control module, and several
low-level flowcharts THAT outline the processing modules. The high-level flowchart is con-
nected to the low-level flowcharts, but the low-level flowcharts are largely independent of each
other. This arrangement led to the ‘structure chart’ (Jackson, 1975), which represents any pro-
gram as a tree structure such as Figure 5.

HT step 3 showed that writers can also use the modularity principle to decompose a very complex
expository argument. They can divide the argument into a concluding argument at the end of the
report, and several supporting arguments in the body sections of the report. A high-level tree out-

Modular Inference Trees for Expository Reports

178

lines the concluding argument, and several low-level trees outline the body arguments. The high-
level tree is connected to the low-level trees, but the low-level trees are not connected to one an-
other, and can be drawn (and checked) independently.

For example, the three low-level trees in Figures 6 to 8, plus the high-level tree in Figure 9, out-
line a much-extended form of the argument of Table 1. The premises consist of historic evidence
of the three mechanisms of Inheritance, Variation and Selection (IVS). The three low-level trees
outline low-level arguments from the premises towards low-level conclusions that computers
evolved by IVS, that networks evolved by IVS, and that software evolved by IVS. Then the high-
level tree outlines the concluding argument from the three low-level conclusions through the in-
termediate conclusion that IT evolved by IVS to the final high-level conclusion that IT evolves
like bio-organisms.

program

repeat initialise terminate

 module 2 module 1 module 3

page 0

module 1

module 2

module 3

page 1 page 2 page 3

Fig. 5. Modular program structure chart

 Mende

 179

networks
evolved by IVS

terminal

communications
evolved by IVS

teleprocessor

network

ARPANET

the web
evolved by IVS

internet

networks include data communications and the web

www

Fig. 7. Low-level inference tree on the evolution of networks

Fortran

Basic

Visual Basic

DOS

operating systems
evolved by IVS

Windows

NT

software
evolved by IVS

hierarchical

network

relational

software includes languages, operating systems and databases

languages
evolved by IVS

database systems
evolved by IVS

Fig. 8. Low-level inference tree on the evolution of software

tabulator

computers
evolved by IVS

ENIAC

Apple

record player

discs
evolved by IVS

magnetic drum

magnetic disc

typewriter

printers evolved
by IVS

line printer

laser printer

computers include CPU, discs and printers

the CPU
evolved by IVS

Fig. 6. Low-level inference tree on the evolution of computers

Modular Inference Trees for Expository Reports

180

The four trees enable you to check for reasoning errors, and eliminate them before writing the
report in detail. Then the trees would serve as useful blueprints for detailed report writing. There-
fore writers can gain substantial benefits by adopting the modularity principle to outline a very
complex expository argument in the form of a hierarchy of inference trees. But how should they
proceed to draw the hierarchy of inference trees?

Design Procedures
An answer was found by extending a pair of procedures that were recommended in an earlier pa-
per (Mende, 2004b). They are manual procedures that emulate the forward and backward chain-
ing algorithms of Artificial Intelligence.

The forward chaining procedure lets writers start with the facts, and design low-level trees of mi-
nor arguments from the facts towards low-level conclusions. Then they can use the conclusions of
the low-level trees as premises in designing a high-level tree of the major argument towards the
final conclusion.

For example, the low-level tree of Figure 8 could be designed in five steps.
1. Focus on historic cases that involve software.
2. Select the cases of evolving languages, and infer that languages evolved by IVS.
3. Select the cases of operating systems, and infer that operating systems evolved by IVS.
4. Select the cases of database systems, and infer that database systems evolved by IVS.
5. From the results of steps 2-4, conclude that software evolved by IVS.

Then, the high-level tree of Figure 9 could be designed by using the conclusions of the low-level
trees 6-8 as premises, and combining them into wider generalisations until the desired conclusion
emerges.

1. Select the premises ‘computers evolved by IVS’ and ‘networks evolved by IVS’ from the
conclusions of Figures 6 and 7, and combine them into ‘hardware evolved by IVS’.

2. Add the premise ‘software evolved by IVS’ from the conclusion of Figure 8, and together
with the premise ‘IT = h-ware + s-ware’, combine them into ‘IT evolved by IVS’.

3. From the additional premise ‘trends continue’, infer ‘IT evolves by IVS’.
4. From the additional premise ‘bio-organisms evolve by IVS’, infer that ‘IT evolves like bio-

organisms’.

IT evolves like
bio-organisms

bio-organisms
evolve by IVS

computers
evolved by IVS

IT = h + s-ware
IT
evolved by IVS

IT evolves by IVS

networks
evolved by IVS

software
evolved by IVS

hardware
evolved by IVS

trends continue

Fig. 9. High-level inference tree on the evolution of IT

 Mende

 181

The backward chaining procedure lets writers begin by hypothesising the desired conclusion, and
design a high-level tree from that hypothesis towards intermediate hypotheses and finally facts.
For example, the high-level Figure 9 could be designed in five steps.

1. Hypothesise the desired conclusion ‘IT evolves like bio-organisms’.
2. From the fact ‘bio-organisms evolve by IVS’, derive the new hypothesis ‘IT evolves by

IVS’.
3. From the assumption ‘trends continue’, derive the new hypothesis ‘IT evolved by IVS’.
4. Divide the new hypothesis into hardware and software hypotheses.
5. Divide the hardware hypothesis into computer and network hypotheses.

Then the three low-level trees of Figures 6-8 could be designed by selecting the intermediate hy-
potheses about computers, networks and software, one by one, and working backward to the rele-
vant historic facts. For example, Figure 8 would be designed in three steps.

1. Get the intermediate hypothesise ‘software evolved by IVS’ from the high-level tree.
2. From the fact that software includes languages, operating systems and databases, derive the

new hypotheses ‘languages evolved by IVS’, ‘operating systems evolved by IVS’, and ‘da-
tabases evolved by IVS’.

3. For each of these hypotheses, adduce evidence from historical cases.

Therefore writers can easily design a modular hierarchy of inference trees by using forward or
backward chaining (or a combination of the two). But a problem now arises, because writers can
use the chaining procedures to produce several alternative argument hierarchies from identical
premises towards the identical conclusion – and some of these hierarchies are less efficient than
others.

Avoiding Inefficient Designs
An argument hierarchy is inefficient if an alternative hierarchy would reach the same conclusion
with fewer paragraphs, sentences and words. In the absence of appropriate guidelines, writers can
easily produce an inefficient hierarchy. For example, when sixty third-year university students
were asked to prove that IT evolves like bio-organisms, almost all of them chose an inefficient
hierarchy, similar to the one below. Its high-level tree is Figure 10; its first low-level tree is Fig-
ure 11, and the other two low-level trees are similar, with the word ‘inheritance’ merely being

Fig. 10. Inefficient high-level tree for the evolution of IT

IT evolves like bio-
organisms, by IVS

Bio-organisms
evolve by IVS

IT evolves by
Inheritance

IT evolves by
Variation

IT evolves by
Selection IT evolved by IVS

trends continue IT evolves by IVS

Modular Inference Trees for Expository Reports

182

replaced by ‘variation’ and ‘selection’ respectively.

This arrangement is inefficient because the case evidence is distributed over several low-level
trees, which requires that each tree must involve repeated references to all the cases. So when a
reader encounters ENIAC on page 2 of the resulting report, under the heading Inheritance, and
then encounters ENIAC again on page 8 under the heading Variation, he would have forgotten
important historical details that were mentioned on page 2.

 tabulator

CPU evolved by
inheritance

ENIAC

Apple

record player

discs evolved by
inheritance

magnetic drum

magnetic disc

terminal

data communications
evolved by inheritance

teleprocessor

LAN

typewriter

printers evolved by
inheritance

line printer

laser printer

Fortran

languages evolved by
inheritance

Basic

Visual Basic

WAN

the web evolved by
inheritance

ARPANET

www

DOS

operating systems
evolved by inheritance

Windows

NT

IT evolved by
inheritance

hierarchical

network

relational
databases evolved by
inheritance

Fig. 11. Inefficient low-level tree for IT inheritance

 Mende

 183

To provide a simple guideline for avoiding efficient hierarchies, HT step 3 adapted the classic
decoupling rule of Structured Information System Design (Yourdon & Constantine, 1979, chap. 6
& 7):

group strongly coupled components together into the same module,
and separate weakly coupled components in different modules.

This is applicable in Report Writing because core ideas would be strongly coupled if they are di-
rectly connected by inferences or if they are supported by the same peripheral ideas. Conversely,
they would be weakly coupled if there are no inferences between them, or if their peripheral ideas
are different.

If writers had considered coupling in the inefficient IT evolution example of Figures 10 and 11,
they might have seen that the evidence of inheritance, variation and selection is very strongly
coupled within each individual technology, and strongly coupled within each technological class;
but that technological classes are weakly coupled, and individual technologies are very weakly
coupled. So the decoupling rule demands that each low-level tree should be premised exclusively
on the strongly coupled IVS evidence within one selected technology or technological class, and
should omit weakly coupled evidence from the other technologies or technological classes. Thus
the three low-level trees should prove that computers have evolved by IVS, networks have
evolved by IVS and software has evolved by IVS, leaving the high-level tree to combine those
generalisations to the conclusion that IT evolves by IVS – as in the efficient IT evolution example
of Figures 6 - 9.

Therefore when writers draw a hierarchy of inference trees, they should use not only the modular-
ity principle and the chaining procedures but also the decoupling rule.

Another Example
The last recommendation was based on inductive and deductive arguments in the previous sec-
tions. Yet ‘the proof of the pudding is in the eating’. So HT step 4 was necessary to provide em-
pirical evidence that modular inference trees really work, by applying them to several examples
of very complex expository arguments. One of those examples was presented above – name

 for a small argument:
- draw an inference tree
- check it for reasoning errors

for a large argument, use either
forward or backward chaining for a large argument:

- draw a hierarchy of trees
- use chaining procedures
- group strong coupled cores
- check for reasoning errors

for a large argument,
- group strongly coupled cores,
- separate weakly coupled cores

inference trees
are useful to
ensure effective
& efficient
expository
arguments

for large argument, draw trees of:
- high-level argument
- low-level arguments

Figure 12: High-level tree for Modular inference trees.

Modular Inference Trees for Expository Reports

184

ly the case of IT evolution. Another example is presented below. It outlines the argument towards
modular inference trees in the present paper. Its modular hierarchy is shown in Figures 12-16.
The trees were drawn after a first draft of the paper had been written, not beforehand, as recom-
mended above (because the author had only a vague idea of what to prove). Nevertheless they
revealed dozens of reasoning errors – which were then corrected, in the trees and the paper.

for a small
argument, draw
an inference tree
and check it for
reasoning errors

writers need some means of
focusing their attention on the
core ideas and inferences

reasoning errors can occur,
even in a small argument

examples of effectiveness
and efficiency errors (fig 2-4)

an inference tree easily
reveals reasoning errors

earlier paper a program flowchart ensures
that paragraphs fit coherently;
similarly an inference tree
ensures that the paragraphs
of an expository argument fit
together

paragraphs have core ideas and
many peripheral ideas

example of IT selection (fig 1)

Figure 13: Low-level tree for a small argument

for a large argument, single tree
is awkward to draw & check

program homology: modularise
a flowchart by dividing it into a
control module and subsidiary
processing modules

example: structure chart (fig 5)

example: IT evolution (fig 6-9)

modularise an inference tree
by division into a concluding
argument and several
subsidiary arguments

the trees serve as blueprints
for writing the report in detail

Reasoning errors are more likely
to occur in a large argument

for a large argument,
draw trees of
- high-level argument
- low-level arguments

Figure 14: Low-level tree for a modular hierarchy

 Mende

 185

So writers can use modular inference trees to outline a complicated argument.

Conclusion
The homological transfer method was successfully applied here to transfer modularity, decoup-
ling and chaining principles of Computing into the field of Report Writing. Although these prin-
ciples are well known in Computing, they are not well known in Report Writing: so writers can
learn something new. In particular, the new principles should appeal to writers in Information
Systems and Computer Science, because they would readily appreciate the underlying homolo-
gies.

The new modularity and decoupling principles of Report Writing are intended to be used in draw-
ing inference trees of expository arguments. An expository argument consists of the core ideas of
the body-paragraphs in an expository report, plus inferences between them. An inference tree out-
lines an expository argument by means of boxes and arrows: the boxes represent core ideas in the
various paragraphs of the report, and arrows represent the inferences between the core ideas, from
premises through intermediates to the conclusion. The tree can be used to detect reasoning errors
in an expository argument: both effectiveness errors that undermine the credibility of the conclu-
sion, and efficiency errors that waste the reader’s time.

for a large argument,
writers can easily draw a
hierarchy of inference
trees using either forward
or backward chaining

example: f-c to draw fig 8

AI homology: backward chaining

example: b-c to draw fig 9+8

AI homology: forward chaining

Figure 15: Low-level tree for chaining

 chaining procedures may
produce inefficient
hierarchy toward the same
conclusion

IS homology: decoupling rule

for a large argument,
- group strongly
coupled cores into
same module,
- separate weakly
coupled cores in
different modules

example: IT evolution (fig 10-11)

decoupling rule is applicable in
Report Writing

analysis of inefficient fig. 10-11

analysis of efficient fig. 6-9

Figure 16: Low-level tree for decoupling

Modular Inference Trees for Expository Reports

186

Except in a very simple argument – involving only three or four inferences – reasoning errors can
easily occur. So in order to eliminate them, writers should draw an inference tree, and check it,
preferably before writing the report in detail, or otherwise after writing a first draft.

For a not-very complex argument that involves less than a dozen inferences, writers may draw a
single inference tree. However if they attempt to do that for a very complex argument, then the
tree would spread over several pages, and it would be awkward to draw and to check. Instead,
writers should draw a modular hierarchy of inference trees. This includes a top-level concluding
argument and several low-level body arguments. To draw those trees, writers may emulate the AI
techniques of forward or backward chaining. In forward chaining, they can design low-level trees
from the facts to intermediate conclusions, and then design a high-level tree from the intermediate
conclusions to the final conclusion. In backward chaining, they can design a high-level tree from
the final conclusion to intermediate conclusions, and then design low-level trees from the inter-
mediate conclusions to the facts. With either technique, they should ensure that strongly coupled
core ideas are grouped together in the same low-level tree, and that weakly coupled core ideas are
separated in different trees. After drawing the modular hierarchy of inference trees, they can use
the trees to check for reasoning errors that undermine credibility or waste the reader’s time.

So inference trees are useful tools for ensuring effective and efficient argument in expository re-
ports: single trees for less-complex reports, and a modular hierarchy of trees for more complex
reports. Readers are invited to experiment with these tools, and if they meet expectations, report
their experiences in conferences and journals so that others can also use those tools.

Then in due course someone may even automate them, so that word processors such as MS-Word
would draw inference trees at the press of a button, and perhaps even check the reasoning.

References
Arnaudet, M. L. & Barrett M. E. (1984). Approaches to academic reading and writing. Englewood Cliffs,

NJ: Prentice-Hall.

Evans, J. (1982). The psychology of deductive reasoning. London: Routledge & Kegan Paul.

Jackson, M. A. (1975). Principles of program design. London: Academic Press.

Mende, J. (1990). Homological transfer - An information systems research method. South African Com-
puter Journal, 2, 6-11.

Mende, J. (2004a). A classification of reasoning errors. Available from http://www.isys.wits.ac.za.

Mende, J. (2004b). Two chaining procedures for outlining expository reports. Available from
http://www.isys.wits.ac.za.

Mende, J. (2004c). Two logic tools for outlining expository reports. Available from
http://www.isys.wits.ac.za.

Mende, J. (2004d). Using inference trees to detect reasoning errors in expository reports. Available from
http://www.isys.wits.ac.za.

Ruch, W. V. & Crawford M. L. (1988). Business reports. Boston: PWS-KENT.

Wilson, E. O. (1998). Consilience: The unity of knowledge. New York: Alfred A Knopf.

Yourdon, E. (1975). Techniques of program structure and design. Englewood Cliffs, NJ: Prentice-Hall.

Yourdon, E. & Constantine L. L. (1979). Structured design. Englewood Cliffs, NJ: Prentice-Hall.

http://www.isys.wits.ac.za/
http://www.isys.wits.ac.za/
http://www.isys.wits.ac.za/
http://www.isys.wits.ac.za/

 Mende

 187

Biography
Jens Mende has a bachelor’s degree in applied mathematics, a diploma in
computer science, a master’s in management, and fifteen years’ practical ex-
perience, mainly in information system analysis, design and programming.
He has spent the last twenty-five years at the University of the Witwaters-
rand, teaching programming, system design, IS management and report writ-
ing. He has published three dozen papers on computer education, system de-
sign and IS management, and has written another two dozen on logic, report
writing, research method and evolution everywhere – which are currently in
the process of publication.

